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Big Data in Motion

Obama the warrior
Th € Misgoverning Argentina

EConon]iSt The economic shift from West to East

Genetically modified crops blossom
T N WY it The right to eat cats and dogs

The data deluge

AND HOW TO HANDLE IT: A 14-PAGE SPECIAL REPORT

IBM estimates that 90% of all the
world's data has been created in

the last two years.

Feb 27, 2010

Global data volume in exabytes
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Data quality solutions exist for enterprise
data like customer, product, and address
data, but this is only a fraction of the total
enterprise data.
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By 2015 the number of networked devices will be
double the entire global population. All sensor
data has uncertainty.

The total number of social media accounts exceeds
the entire global population. This data is highly ‘
uncertain in both its expression and content. 7
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»1 he Promise and Prejudice of Big Data in Intelligence Community*,
K. Jani, Georgia Institute of Technology, October 26, 2016



Challenges for high-speed Ethernet
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ETHERNET SPEEDS

The required processing capacity of a networking device o TR
depends on: Q Tooe Tooced O e
; 406 10&6_ OzseiiGbE
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TUTI

Challenges for high-speed Ethernet
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= Common use-cases: application/session/user identification for
firewalls or bandwidth throttling, cryptology, intrusion detection, virus

scanning, ...



Challenges for high-speed Ethernet
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Challenges for high-speed Ethernet

* Intel Xeon E5-2660v3: 10 cores @ 2.6 GHz, 105 W TDP Networ.klng 400Gbps
Function
instructions —
IPS = 10cores * foy * IPCppre =~ 26 * 10° second L2 Switching 58.6 * 10°
IPC.,. ~ 1 Intrusiqn 588 * 10°
Detection
1.6 * 1012

L2 Switching X Intrusion Detection X x

IPSec @ 400Gbps would require 70 CPUs with a TDP of 7 kW!
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Challenges for high-speed Ethernet
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0 250 500 750 1000 1250 1500
Per-packet cost [CPU cycles]

= Multi- and manycore architectures help to achieve higher throughputs
= ... but complexity of network services grows faster than processor performance

Ref.: S. Gallenmiller, P. Emmerich, F. Wohlfart, D. Raumer, and G. Carle. ,Comparison of
Frameworks for High-Performance Packet IO“. In: ANCS ’15



How to cope with these challenges?

Performance and Energy Efficiency - N
. . = . Processor
= cope with very high data rates (up to hundreds of Gbps) n +ISA extensions )
= |owest packet delay as possible 3
= |ow power consumption ‘ Customized ASIC R
Log COMPUTATIONAL DENSITY = performance/area
Source: Blume et al., ,Model-based exploration of the
N Design Space for Heterogeneous System on Chip®, 2002
Flexibility

= adapt to evolving packet processing applications

= efficient resource sharing among network applications

=) Programmable CPU / ASIP

Log POWER CONSUMPTION



State-of-the-art Network Processors

Netronome NFP-6xxx Flow Processor

= 216 programmable cores to execute software
— 96 packet processing cores for stateless processing
— 120 flow processing cores for stateful processing

N
= More than 300 % 109 222008
second

= 100 hardware accelerators for
— DPI, regular expression matching
— Cryptography
— Hash calculation
— Packet I/0O, Queue Management

= 50 Gbps bulk cryptography

= 720 Gbps /0
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NFP-6xxx Netronome Flow Processor
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State-of-the-art Network Processors

Netronome NFP-6xxx Flow Processor NEP-6xxx Netronome Flo

ARM11 Core Accelerators

= 216 programmable cores to execute software iy saider fos
. . Lo Queue Bl

— 96 packet processing cores for stateless processing M s cam  Hash

— 120 flow processing cores for stateful processing
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= 100 hardware accelerators for
— DPI, regular expression matching k
— Cryptography
— Hash calculation

— Packet I/0, Queue Management Memory fio Data Winax
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DDR-400 28-35 64 bit
= 50 Gbps bulk cryptography DDR3-2133  21-26 1066 64 bit 17.0
DDR4-3200  25-30 1600 64 bit 25.6

= 720 Gbps I/0



Network Processing Memory Bandwidth Requirements

IP packets ...
= ... traverse the memory interface at least 4 times! O

» Exceeds the peak streaming data rate of DDRx!

BW e = 4 - 400Gbps = 1600 Gbps = 200GByte/s

Memory Tocc f, /0 Data W.ax
[ns] [MHz] | width [GByte/s]

DDR-400 28-35 64 bit
DDR3-2133 21-26 1066 64 bit 17.0
DDR4-3200 25-30 1600 64 bit 25.6
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Multi-Purpose SmartNICs

Offload compute node resources for ever
increasing networking demands:

®* Network and Node Resilience
® Low-latency network coding / FEC

®* DFG SPP 2378 “Resilience in
Connected Worlds” (joint project
with G. Carle)

® Reflex-based traffic steering

® Energy Efficiency & Power
Management

® ecoNIC-based workload pinning

Host

App App
Software Stack B C
Host node
App
A Network Functions
T4P4S Legacy NIC
DPDK oS
HyperNIC
Software Stack PCI-E Ethernet MAC
Advanced .
Network
Functions CPU Core(s)
Lean Runtime | HW Accelerators

HyperNIC

Memory

Co-Processors

Ethernet MAC

Network
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ecoNIC
Pinning
® Combines workload power management with
ON: ' !
priority-based traffic steering / pinning o 0000060

Network

Governor

PCle

Driver

Priority

amd-pstate

IRQ

F. Biersack, M. Liess, M. Absmann, F. Lotter, T. Wild, A. Herkersdorf, “ecoNIC: Saving Energy through SmartNIC-based Load
Balancing of Mixed-Critical Ethernet Traffic, 27th Euromicro Conference on Digital System Design (DSD), 2024.
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Kernel

CPU
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Networking Testbed @ LIS
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ecoNIC
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® Comparison relative to Linux Power Governors (performance, ondemand)

® C1/C2: different parameter settings for switching between power states
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Crossbar-/ NoC-based SmartNIC Interconnect

High data rate SmartNICs demand server-like compute capabilities B

Processing

® Mitigated by HW offloads (PEs) and pipelined (SRAM) memory Engine 1

buffers

FlexRoute / FlexCross / HiPerNoC

® Parse / Classify / Map packets to a PE
traversal route

® Virtual cut-through (VCT) crossbar / router
with two stage pipeline

® 512 bit data path; 102Gb/s

K. Zyla, M. Liess, T. Wild, A. Herkersdorf, ,FlexCross: High-Speed and Flexible Packet Processing via a Crosspoint-Queued Crossbar®, Euromicro DSD, 2024.
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K. Zyla, M. Liess, T. Wild, A. Herkersdorf, "HiPerNoC: A High-Performance Network-on-Chip for Flexible and Scalable FPGA-Based SmartNICs“, IEEE DATE, 2025.
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Smart Network Interface for Predictable Services

Hardware and software for a new generation of architectures aiming for reliable, high data rate, low-latency,
cut-through forwarding and processing

= LML Load Management Layer to balance resource utilization across available compute nodes
— lower application latency and quick failure recovery

= NHM Network Health Monitoring for high precision flow-based traffic measurement,
— quick detection of suboptimal network conditions

= LML+NHM incorporate inferred network state in load balancing decision
— contribution to functional safety, overload mitigation and resource savings

zzzzzz
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Take Aways ...

« High-speed Ethernet poses technical challenges on the dataplane architecture
* Not only on provisioning sufficient compute performance / accelerators, ...
« equally on data movement and storage

* Crucial relevance of ingress / egress wire-rate pre-/post-processing in NICs
» Offloading heterogeneous host processing (function repartitioning)
« Smart traffic steering and monitoring

« Energy saving and low-latency priority services are not necessarily
contradicting goals

18
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