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Internet Traffic is Growing in Speed and Size

3

Massive amount of data to be processed in data centers

Massive amount of data to be processed at cloud/edge networks

External internet-facing
• users, sensors, services

• terabits per second (Tbps)

• millions of connections per second

Internal machine-to-machine
– big-data, AI/ML, etc

– thousands of servers

– petabits per second (Pbps) of traffic

Processing massive amounts of traffic at high rates is hard!



Processing Massive Amounts of Traffic at High Rates is Hard!

4

Network Functions Virtualization is an essential
architectural paradigm of today’s data centers
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Processing Massive Amounts of Traffic at High Rates is Hard!

6

NFs are deployed on commodity hardware rather than specialized one

Cost-Effective Flexible Scalable

Lower performance compared to specialized hardware



Minimize CPU Cycles per Packet
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State-of-the-art packet-splitting solutions increase shallow NFs throughput

e.g., Ribosome, nicmem
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e.g., Ribosome, nicmem
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State-of-the-art packet-splitting solutions increase shallow NFs throughput
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e.g., Ribosome, nicmem

input

External Device

Split Merge

output

Storage
(Local or Remote)

h’ p
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NF

State-of-the-art packet-splitting solutions increase shallow NFs throughput
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e.g., Ribosome, nicmem

input

External Device

NF
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h’ p
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>150 Mpps of 64B packets
with a 100G link!

State-of-the-art packet-splitting solutions increase shallow NFs throughput
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e.g., Ribosome, nicmem

input

External Device

Split Merge

output

Storage
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>150 Mpps of 64B packets
with a 100G link!

State-of-the-art packet-splitting solutions increase shallow NFs throughput

Store per-flow states!

Stateful
NF
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input

External Device

Split Merge

output

Storage
(Local or Remote)

h’ p

h

p

Stateful
NF

>150 Mpps of 64B packets
with a 100G link!

None of the existing frameworks can handle such loads!

Store per-flow states!

State-of-the-art packet-splitting solutions increase shallow NFs throughput



Can we scale complex, stateful
packet processing chains on commodity hardware to 

over 100 millions packets per second?

18



Essential Principles of Stateful Packet Processors
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Batch Processing Minimize Memory Accesses Minimize Sync. Overheads
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Batch Processing Minimize Memory Accesses Minimize Sync. Overheads

ph

NF



Essential Principles of Stateful Packet Processors
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Batch Processing Minimize Memory Accesses Minimize Sync. Overheads

Maximizes instruction cache hits

Enables software prefetching of data

Process batches of packets

ph
ph

ph
ph

VPP

NF
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Batch Processing Minimize Memory Accesses Minimize Sync. Overheads

Hash tables are the essential data structure in stateful NFs

Require at least two random memory accesses
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Batch Processing Minimize Memory Accesses Minimize Sync. Overheads
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Extra Irregular Memory Accesses

Each memory access 
drops performance!

How to minimize
memory accesses?

Hash tables are the essential data structure in stateful NFs

Require at least two random memory accesses

VPP
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Batch Processing Minimize Memory Accesses Minimize Sync. Overheads

How to minimize memory accesses? Aggregate States

Hash Table Hash Table

NF1 NF2

VPP
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Batch Processing Minimize Memory Accesses Minimize Sync. Overheads

How to minimize memory accesses? Aggregate States

Hash Table Hash Table

NF1 NF2

VPP
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Batch Processing Minimize Memory Accesses Minimize Sync. Overheads

How to minimize memory accesses? Aggregate States

Hash Table

NF1 NF2State Manager

FastClickVPP
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Batch Processing Minimize Memory Accesses Minimize Sync. Overheads

How to minimize memory accesses? Aggregate States

Sacrifices batch 
processing benefits!

Hash Table

NF1 NF2State Manager

FastClickVPP
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Batch Processing Minimize Memory Accesses Minimize Sync. Overheads

How to scale NFs on multiple cores? Shared-Nothing Model
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Batch Processing Minimize Memory Accesses Minimize Sync. Overheads

How to scale NFs on multiple cores? Shared-Nothing Model

High Performance

Per-flow Consistency

FastClickVPP

RSS

Core 2
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e
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ry
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Not applicable in all scenarios!
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not applicable in all scenarios!

(i) Efficient Inter-Core Load Balancing

RSS struggles to efficiently distribute packets among cores with adversarial loads
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Monitor and rebalance flows among cores (e.g., Dyssect, RSS++)
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not applicable in all scenarios!

(i) Efficient Inter-Core Load Balancing

RSS struggles to efficiently distribute packets among cores with adversarial loads

RSS

Core 2

Core 3

Core 4

Core 1

Monitor and rebalance flows among cores (e.g., Dyssect, RSS++)

Monitoring

Requires shared data 
structures and variables

Extra overheads!
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not applicable in all scenarios!

(i) Efficient Inter-Core Load Balancing

(ii) Stateful NFs with Diverse Flow Definitions

The definition of state is not exclusively the 5-tuple!

Load Balancer

Policer

Port Scan Detector

Src IP Dst IP Src Port Dst Port Protocol

Src IP Dst IP Src Port Dst Port Protocol

Src IP Dst IP Src Port Dst Port Protocol

What happens if they are chained together?
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Shared-Nothing Model is
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not applicable in all scenarios!

(i) Efficient Inter-Core Load Balancing

(ii) Stateful NFs with Diverse Flow Definitions

Load Balancer

Policer

Port Scan Detector

Src IP Dst IP Src Port Dst Port Protocol

Src IP Dst IP Src Port Dst Port Protocol

Src IP Dst IP Src Port Dst Port Protocol

Separate hash table per 
flow definition!

States are shared
among all cores

Performance 
degradation!

The definition of state is not exclusively the 5-tuple!

What happens if they are chained together?



Essential Principles of Stateful Packet Processors
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Batch Processing Minimize Memory Accesses Minimize Sync. Overheads
FastClickVPP

Overlooking one of these principles hinders
Stateful NF frameworks to process >100Mpps 

We must support the three principles together!

FAJITA
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Batch Processing Minimize Memory Accesses Minimize Sync. Overheads

Flow Manager

Optimized state aggregation

NF1 NF2

NF1 NF2

NF1 NF2

Bulk Lookup for all packets in the batch
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Batch Processing Minimize Memory Accesses Minimize Sync. Overheads

Flow Manager

Bulk Lookup for all packets in the batch

All NFs states are stored in a 
contiguous memory block

Batches are preserved!

Optimized state aggregation

NF1 NF2

NF1 NF2

NF1 NF2
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Batch Processing Minimize Memory Accesses Minimize Sync. Overheads

NF1 NF2

Flow Manager

NF1 NF2

NF1 NF2

NF1 NF2



NF1 NF2
NF1 NF2

FAJITA
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Batch Processing Minimize Memory Accesses Minimize Sync. Overheads

NF1 NF2

Flow Manager

Prefetching

NF1 NF2

Each NF prefetches its state data at the right time



NF1
NF1

FAJITA
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Batch Processing Minimize Memory Accesses Minimize Sync. Overheads

NF1 NF2

Flow Manager

ProcessingPrefetching

NF1

Minimize memory loads overheadsEach NF prefetches its state data at the right time
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Batch Processing Minimize Memory Accesses Minimize Sync. Overheads

NF1
NF1

NF1 NF2

Flow Manager

ProcessingPrefetching

NF1

Only considers 5-tuple flows definition!
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Core 0

Core 1

NF 2 (Dst IP)NF 1 (Src IP)
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Core 0
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NF 2 (Dst IP)NF 1 (Src IP)

Shared
HT

Shared 
States

Shared 
States

Shared
HT
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Core 0

Core 1

NF 2 (Dst IP)NF 1 (Src IP)

Shared
HT

Shared 
States

Shared 
States

Shared
HT

How can we reduce the inevitable sync. overhead with different flow definitions?
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Batch Processing Minimize Memory Accesses Minimize Sync. Overheads

Core 0

Core 1

NF 2 (Dst IP)NF 1 (Src IP)

Shared
HT

Shared 
States

Shared 
States

Shared
HT

How can we reduce the inevitable sync. overhead with different flow definitions?

Auxiliary HT
(5-tuple)

Auxiliary HT
(5-tuple)

Keep pointers to shared states!
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Batch Processing Minimize Memory Accesses Minimize Sync. Overheads

Core 0

Core 1

NF 2 (Dst IP)NF 1 (Src IP)

Shared
HT

Shared 
States

Shared 
States

Shared
HT

How can we reduce the inevitable sync. overhead with different flow definitions?

Auxiliary HT
(5-tuple)

Auxiliary HT
(5-tuple)

The first packet of a flow 
always causes a miss
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How can we reduce the inevitable sync. overhead with different flow definitions?

Auxiliary HT
(5-tuple)

Auxiliary HT
(5-tuple)

Update the auxiliary HT
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Core 0

Core 1

NF 2 (Dst IP)NF 1 (Src IP)

Shared
HT

Shared 
States

Shared 
States

Shared
HT

How can we reduce the inevitable sync. overhead with different flow definitions?

Auxiliary HT
(5-tuple)

Auxiliary HT
(5-tuple)

Hit!
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Batch Processing Minimize Memory Accesses Minimize Sync. Overheads

Core 0

Core 1

NF 2 (Dst IP)NF 1 (Src IP)

Shared
HT

Shared 
States

Shared 
States

Shared
HT

How can we reduce the inevitable sync. overhead with different flow definitions?

Auxiliary HT
(5-tuple)

Auxiliary HT
(5-tuple)

Minimize sync. overheadsOnly a single expensive insert/lookup into/from shared HT 
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Batch Processing Minimize Memory Accesses Minimize Sync. Overheads

Core 0

Core 1

NF 2 (Dst IP)NF 1 (Src IP)

Shared
HT

Shared 
States

Shared 
States

Shared
HT

How can we reduce the inevitable sync. overhead with different flow definitions?

Auxiliary HT
(5-tuple)

Auxiliary HT
(5-tuple)

Only a single expensive insert/lookup into/from shared HT 
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Testbed and Workloads
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Traffic 
Generator

FAJITA

Multicaster
(Intel Tofino 2)

200Gbps

200Gbps
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Synthetic 64-B trace w/ 2 million flows
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176Mpps of 64-B headers

1KB Avg. Internet Packet Size

1.4Tbps of traffic on a 
single socket!
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FAJITA is the first system to enable >100Mpps stateful NF chains on a single socket!
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FAJITA performs stateful packet processing in half the time of other frameworks
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8 CPU cores – Synthetic Trace w/ Elephants Only
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Is RSS Sufficient for FAJITA?
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FAJITA achieves better performance solely relying on RSS

Load imbalance only depends on the number of flows, that are usually >2K at high rates! 
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FAJITA take-away

The FAJITA system:

• incorporates the three essential principles for stateful packet processing together

• minimizes memory access overheads by exploiting batching & software prefetching

• alleviates overheads of accessing shared data structures by introducing auxiliary HTs

• achieves performance 2x higher than existing stateful packet processors

• demonstrates that dynamic inter-core load balancing is detrimental at high rates

• only processes packet headers

75

How to split packets? 
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State-of-the-art packet-splitting solutions increase shallow NFs throughput

e.g., Ribosome, nicmem

input

External Device

Split Merge

output

Storage
(Local or Remote)

NF

h p
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Packet-Splitting Approaches

State-of-the-art packet-splitting solutions increase NFs throughput

Free up Bandwidth
Reduce the number of dedicated NF servers
Lower energy consumption

Improve NF Performance
Better CPU cache exploitation

Complex Deployment
Require end-host modifications
Require available shared resources
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State-of-the-art packet-splitting solutions increase NFs throughput

Storing Payloads in the On-NIC Memory (nicmem)

Packet-Splitting Approaches
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Storing Payloads in the On-NIC Memory (nicmem)
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input

NIC
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Split Merge

output

pppp
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Local Storage

PCIe
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Simple Forwarder
h p

Send full packets to the NF

Storing Payloads in the On-NIC Memory (nicmem)
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h pSplit packets on the NIC

Storing Payloads in the On-NIC Memory (nicmem)
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p
Store payloads on the 

switch and send 
headers to the NF 

through PCIe

Storing Payloads in the On-NIC Memory (nicmem)
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input

NIC

NF

Split Merge

output

pppp

ppp

Local Storage

PCIe

Switch

Simple Forwarder
h’ p

Capped by the NIC 
bandwidth!

Storing Payloads in the On-NIC Memory (nicmem)
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State-of-the-art packet-splitting solutions increase NFs throughput

Storing Payloads in the On-NIC Memory (nicmem)

Storing Payloads on Shared Resources (Ribosome)

Packet-Splitting Approaches
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Storing Payloads on Shared Resources (Ribosome)
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Shared resources are 
not available in all 

operational scenarios!
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State-of-the-art packet-splitting solutions increase NFs throughput

Storing Payloads in the On-NIC Memory (nicmem)

Storing Payloads on Shared Resources (Ribosome)

Store on the ASIC SRAM
• ideal, but how? no API to store payloads!

Packet-Splitting Approaches



Can we store the entire payload within the switch 
without requiring external devices?
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Core Idea: A Queue-Based Packet Storage

98

Exploit the switch shared buffer to store payloads
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Exploit the switch shared buffer to store payloads

Packet Buffer
(shared among all the pipes)

…
…

p p

p pp

…
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Ingress Egress

…

Egress Ports

Per-Port Queues

Packet Pointer



TM

Core Idea: A Queue-Based Packet Storage

100

Exploit the switch shared buffer to store payloads
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Exploit the switch shared buffer to store payloads

Packet Buffer
(shared among all the pipes)

…
…

p p

pp
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…p p

Ingress Egress

…

Egress Ports

p

How can we access the packet buffer?

Large shared buffer No programmatic access
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How can we access the packet buffer?

Hold payloads in the port queues until 
the processed header from the NF is returned!

Enqueued packets implicitly control the buffer memory

Would it work for real?
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Challenges
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Split Merge

output
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Port Queues

p p

h
5-500µs

Payload could be released before the 
corresponding header is back!

p

How can we control the queues?

Challenges



Congest the egress queues to delay payloads release 
by the time required for NF processing
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How can we control the queues?
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How can we control the queues?
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How can we control the queues?

Create copies of payloads to fill up the queues



Congest the egress queues to delay payloads release 
by the time required for NF processing

Recirculate payloads until headers are ready

Create copies of payloads to fill up the queues
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Stop the queue with Priority-Flow-Control (PFC)

How can we control the queues?



Congest the egress queues to delay payloads release 
by the time required for NF processing

Recirculate payloads until headers are ready

Create copies of payloads to fill up the queues
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Stop the queue with Priority-Flow-Control (PFC)

How can we control the queues?

QueueMem



Evalution of QueueMem (combined with FAJITA)

116

Network function: Per-flow counter + Load balancer + Per-flow rate limiter



FAJITA + QueueMem conclusions

The FAJITA system:

• incorporates the three essential principles for stateful packet processing together

• minimizes memory access overheads by exploiting batching & software prefetching

• alleviates overheads of accessing shared data structures by introducing auxiliary HTs

• achieves performance 2x higher than existing stateful packet processors

• demonstrates that dynamic inter-core load balancing is detrimental at high rates

• only processes packet headers

The QueueMem system (under submission): 

• supports packet splitting entirely on the switch

• reduces power consumption 

• relies on PFC to limit buffer usage
117
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FAJITA


	Slide 1
	Slide 2
	Slide 3: Internet Traffic is Growing in Speed and Size
	Slide 4: Processing Massive Amounts of Traffic at High Rates is Hard!
	Slide 5: Processing Massive Amounts of Traffic at High Rates is Hard!
	Slide 6: Processing Massive Amounts of Traffic at High Rates is Hard!
	Slide 11: Minimize CPU Cycles per Packet
	Slide 12: Minimize CPU Cycles per Packet
	Slide 13: Minimize CPU Cycles per Packet
	Slide 14: Minimize CPU Cycles per Packet
	Slide 15: Minimize CPU Cycles per Packet
	Slide 16: Minimize CPU Cycles per Packet
	Slide 17: Minimize CPU Cycles per Packet
	Slide 18
	Slide 19: Essential Principles of Stateful Packet Processors
	Slide 20: Essential Principles of Stateful Packet Processors
	Slide 21: Essential Principles of Stateful Packet Processors
	Slide 22: Essential Principles of Stateful Packet Processors
	Slide 23: Essential Principles of Stateful Packet Processors
	Slide 24: Essential Principles of Stateful Packet Processors
	Slide 25: Essential Principles of Stateful Packet Processors
	Slide 26: Essential Principles of Stateful Packet Processors
	Slide 27: Essential Principles of Stateful Packet Processors
	Slide 28: Essential Principles of Stateful Packet Processors
	Slide 29: Essential Principles of Stateful Packet Processors
	Slide 30: Shared-Nothing Model is
	Slide 31: Shared-Nothing Model is
	Slide 32: Shared-Nothing Model is
	Slide 33: Shared-Nothing Model is
	Slide 34: Shared-Nothing Model is
	Slide 35: Shared-Nothing Model is
	Slide 36: Shared-Nothing Model is
	Slide 37: Essential Principles of Stateful Packet Processors
	Slide 38: FAJITA
	Slide 39: FAJITA
	Slide 40: FAJITA
	Slide 41: FAJITA
	Slide 42: FAJITA
	Slide 43: FAJITA
	Slide 44: FAJITA
	Slide 45: FAJITA
	Slide 46: FAJITA
	Slide 47: FAJITA
	Slide 48: FAJITA
	Slide 49: FAJITA
	Slide 50: FAJITA
	Slide 51: FAJITA
	Slide 52: FAJITA
	Slide 53: FAJITA
	Slide 54: FAJITA
	Slide 55: FAJITA
	Slide 56: FAJITA
	Slide 57: FAJITA
	Slide 58: FAJITA
	Slide 59: FAJITA
	Slide 60: FAJITA
	Slide 61: FAJITA
	Slide 62: Evaluation
	Slide 63: Testbed and Workloads
	Slide 64: Evaluation
	Slide 65: Evaluation
	Slide 66: Evaluation
	Slide 67: Evaluation
	Slide 68: Evaluation
	Slide 69: Evaluation
	Slide 70: Evaluation
	Slide 71: Evaluation
	Slide 72: Evaluation
	Slide 73: Evaluation
	Slide 74: Evaluation
	Slide 75: FAJITA take-away
	Slide 76: How to split packets? 
	Slide 77: Packet-Splitting Approaches
	Slide 78: Packet-Splitting Approaches
	Slide 79
	Slide 80: Storing Payloads in the On-NIC Memory (nicmem)
	Slide 81: Storing Payloads in the On-NIC Memory (nicmem)
	Slide 82: Storing Payloads in the On-NIC Memory (nicmem)
	Slide 83: Storing Payloads in the On-NIC Memory (nicmem)
	Slide 84: Storing Payloads in the On-NIC Memory (nicmem)
	Slide 85: Storing Payloads in the On-NIC Memory (nicmem)
	Slide 86: Storing Payloads in the On-NIC Memory (nicmem)
	Slide 87: Storing Payloads in the On-NIC Memory (nicmem)
	Slide 88: Packet-Splitting Approaches
	Slide 89
	Slide 90: Storing Payloads on Shared Resources (Ribosome)
	Slide 91: Storing Payloads on Shared Resources (Ribosome)
	Slide 92
	Slide 93: Storing Payloads on Shared Resources (Ribosome)
	Slide 94: Storing Payloads on Shared Resources (Ribosome)
	Slide 95: Storing Payloads on Shared Resources (Ribosome)
	Slide 96
	Slide 97
	Slide 98: Core Idea: A Queue-Based Packet Storage
	Slide 99: Core Idea: A Queue-Based Packet Storage
	Slide 100: Core Idea: A Queue-Based Packet Storage
	Slide 101: Core Idea: A Queue-Based Packet Storage
	Slide 102: How can we access the packet buffer?
	Slide 103: Challenges
	Slide 104: Challenges
	Slide 105: Challenges
	Slide 106: Challenges
	Slide 107: Challenges
	Slide 108: Challenges
	Slide 109: Challenges
	Slide 110: Challenges
	Slide 111: How can we control the queues?
	Slide 112: How can we control the queues?
	Slide 113: How can we control the queues?
	Slide 114: How can we control the queues?
	Slide 115: How can we control the queues?
	Slide 116: Evalution of QueueMem (combined with FAJITA)
	Slide 117: FAJITA + QueueMem conclusions
	Slide 118: FAJITA + QueueMem conclusions

