Metrics, Mayhem, and Microservices:
Taming the Cloud Observability Beast

Alessandro Cornacchia, Theophilus A. Benson, M. Bilal, Marco Canini

-
(@»p KAUST (UA) Unbabel

University

https://sands.kaust.edu.sa/

& GitHub Copilot

ol
CRM
.9

Enterprise
Services, CRM

g

__Ngs
N .--va\,mazon

[
BF webservices

o)

Data
Analytics

=Y
Fo=

Collaborative
tools

Alibaba Cloud /

Microsoft
Azure

Scientific
Computing

2025 Public cloud computing market size estimated at $723 billion | Statista

i

Entertainment,
VoD, Social
Networks

Etc.

Source: Flaticon

£Y Google Cloud

Cloud-native applications

Decomposition into independent binaries: microservices

— typically materialized as Linux containers
— interacting through network communication: RPC APIs

www.kaustshop.sa/get_products > X
;:El'j@ﬂrs pay \RPC
‘ _</> -
- :</ EI frontend = ’,_,checkout

—og ,(_1 ,\
user \ </> \

advertise

/> module = microservice in e.g., Docker isolated runtime

Cloud-native applications: The GOOD

Decomposition into independent binaries: microservices

— typically materialized as Linux containers
— interacting through network communication: RPC APIs

</>
=S |>:'| frontend d@ — recommend R
=00l —CDD/G P Php.
</> </> =3
_</> | frontend </ EI advertise =ub pay <> | recommend =it/ , checkout — 0| cart
-0 = Ry =0

compute node compute node compute node

* Scaling elasticity + development agility

Cloud-native applications: The BAD

Container | | Container | | Container | | Container
ngine Engine ngine Engine
Los |

(os][os | [os]

¥ (i 49 = 2

L J [v} L J
101l L1iLl 11l

) - r g § 3 r g
L JF L JF - | L JF
LLLA LLLLS

Physical nodes

Failure surface increases!

* Complex stack of software abstractions
— (gray) failures

* It’'s a networked system

— network slowdowns directly translate on
application performance drops

Cloud-native applications: The UGLY

g m R

Why is my application
misbehaving ?

Amazon Social Network

[ASPLOS 2019] Gan Yu et Al, Seer: Leveraging Big Data to Navigate the Complexity of Performance Debugging in Cloud Microservices. 6

Observability

“Is a system property that defines the degree to which the
system can generate actionable insights.

It allows users to understand a system’s state from external
outputs and take (corrective) action.”

[Cloud Native Computing Fundation (CNCF): https://glossary.cncf.io/observability/] 7

https://glossary.cncf.io/observability/

- Requires monitoring a wealth of data

A A mas

Operation name

epu
Erors ©

Frontend @) peployment
e b L
1.7K0im 43ms
at HeEp sta e
0 rm
® m0 ®
Operations Q Infrastructure

o

A
Query type C Service Graph

Filter

+ Addquery & Queryhistory (Query inspector

Table

Name

GET [customers 47.394
GET /catalogue 18.848
GET /login 5 18.231
GET /catalogue/{id} X 16.631

ingress 10.868

Node graph

™

1577 msir
.33 rfsec

frontend

Challenging!

Error Rate

0.00

0.00

0.00

0.00

0.26

Import trace

Duration (p90) Links
ms 385 Tempo
ms 1.89 Tempo
ms 3.76 Tempo

Tempo

ms30.9 Tempo

0.00 ms/r
0.04 rfsec

otel-demo-recommendationservice
0.04 rfsec

Show in Grid layout
n in Explore
Request rate
Request histogram
Failed request rate

View traces

Monitoring affects application performance

* Today’s observability: massive centralized data collection
— e.g., Netdata, Prometheus

collection cycles
» y Netdata CPU 857 —— throughput (k requests/s) 1.0
3 9 £ w
Eaq = 807
[
o 2 A
o1 14
o 0 L 65
0 2 4 : 8 0 2 4 5 8
Time (s) Time (s)

* at scale, observability interferes with application performance
— monitoring processes and applications share the same resources
— non profitable CPU cycles occupied for monitoring

— can hurt end user performance Don’t collect as often?

Overheads prevent fine-grained analysis

* Microservices update their metrics following RPC requests arrivals
— subsecond-scale variations

* but we sample at coarse timescale

— 10s-1m recommended for Prometheus Sounce Bgfric Timescale

db_keys
keyspace_hits
commands_duration
evicted_key

KV store [78]

ApP RPC
NoSQL DB [69] mongodb_connections
mongodb_op_counters

upstream_rq_active
- = Proxies Envoy [35] upstream_cx_connect_fail RPC

T T . cx_rx_bytes_received

o 5 10 cX_tx_bytes_sent
time [s] cpu_usage_seconds
network_tcp_usage

e it 11cfso_cvcvn?gzrslcy

— hard to reason about cause-effects -

oom_events

tunable

— cannot P recis ely corre Iate S LO Table 1: Representative examples of metrics generated at differ-
Vio |ati ons W|th system ru nti me state ent layers of the microservice’s stack. Timescale is the frequency

at which a metric is generated and/or updated by the source.

overhead
A

state-of-the-art
(coarse-grained
sampling)

observability bloat

We want to

’ be here!

uView
» cCoverage

(or accuracy)

Introducing uView

* We build upon three key insights:

|) Generation of observability data is cheap, overhead is in ingestion

2) Value of local data

* can detect anomalous microservice states and performance issues locally (e.g.,
queue sizes, memory bottlenecks, etc.)

3) Rise of IPU accelerators = offload opportunity
* process richer fine-granularity data without imposing CPU overheads on nodes

Introducing uView

* We build upon three key insights:

|) Generation of observability data is cheap, overhead is in ingestion

Dissecting the CPU overheads

* metrics generation & update
— memory writes

Node

generation
* metrics ingestion:

— memory copies

— serialization & network communication

e .
--

ingestion

@ * we run a microbenchmark:

I — 1 node for Docker containers +

1 node with Prometheus collector
VW NETDATA

Prometheus

all containers
— we vary gen and ing intervals

— cAdpvisor generating 100+ system metrics for

BN gen ls, ing 1s BN gen ls,ing 1m B gen 10s,ing Im

.- gen 1s, ing 10s i:- gen 10s, ing 10s | B gen1lm,ing 1m

+20%
¢ i
5 0.4 +2% +4% 1ol
I I I I
S . L |
2 02 1+ ! L1 i
L, O P 1o v
cAdvisor’s l, v vov
CPU consumption 0.0 Wk . . Wik . ."'-'-
1 10 00

of monitored contalners

|- gen 1s, ing 1s j BN genls,ing 1m B gen 10s,ing Im

B gen 1s, ing 10s |- gen 10s, ing 10s | B gen1lm, ing 1m

+50%
0.6 5
+18% 420%
+15% I I
3 00 | : :
s 0.4 iy 4% o
O L I 11 | I
TR .
D) I
a 02 v O :
o, @) P 1 v
cAdvisor’s HE ‘ v
CPU consumption 0.0 Wk . . b T
1 10 00

of monitored contalners
fine-grained metrics incur low generation overhead...

but must use coarse-grained metrics because of ingestion overhead!

This suggests using a wealth of data locally

|) Generation of observability data is cheap, overhead is in ingestion

3) Rise of IPU accelerators = offload opportunity
* process richer fine-granularity data without imposing CPU overheads on nodes

Local data: better distributed tracing

* tracing
— which services and what latencies during execution graph of user requests

* cannot collect all traces 2 how to maximize “relevant” traces!? Q

— traces violating SLOs uView:“l can

tell you!”

Should | export
this trace ?

OSSO

Local insights useful but processing needs increase

|) Generation of observability data is cheap, overhead is in ingestion

2) Value of local data

* can detect anomalous microservice states and performance issues locally (e.g.,
queue sizes, memory bottlenecks, etc.)

Infrastructure Processing Units (IPUs)

* Programmable network cards (SmartNICs)

— on-path cores = programmable Data Path Accelerator
— off-path cores = SoC with general-purpose cores and OS (Linux)

SmartNIC

e.g., NVIDIA BlueField-3
400Gb/s Ethernet
16 ARM A78 off-path CPU cores
| 6 cores, 256 threads Data Path Accelerator (DPA)

£ 77

HPC/AI
Networking
Security
Storage

Local processing without
CPU overheads on nodes

20

LView: in-situ observability

* uView continuously locally monitors metrics at high temporal resolution

* uView automatically pinpoints anomalies and triggers actionable insights

...... » metrics insights = collected data

. . ’ . .
* by Ieveragl'ng }:lVIEV.VS |n5|ghtS,)

observability libraries can improve el V)
sampling quality % J
R

— capture informative data 1
Y ssinias

— reduce clutter CEELEES
SmartNIC [Processing]

Network

V V tunable@

Collector

21

Design challenges

—@f Host to SmartNIC data movement

— take data outside the host boundaries, without introducing overhead

N ° ° °
I ldl Practicality of anomaly detection
L ghw |
— lightweight to co-exist with other offloads to IPUs
— determine critical metrics for each service
— adjust to workload shift with minimal reconfiguration effort

22

LMAP: Local Metrics Analysis

Pipeline

* one LMAP per service

|

Containers
orchestrator

|

System architecture

= |

Service]

Control plane (host)

T m m m e m e e e m e m e mm - = === ==

— 4

LMAP 1 LMAP 2 LMAP N
£ <Y F _
[Pre-processing] [Pre-processing] [Pre-processing
' Metrics Metrics Metrics
: Classifier Classifier Classifier
LN 4 _ "/ o
 Dataplane (SmartNc)

1
1
1
/ E
1
1
]
’

23

System architecture

* uwView API (one-time cost) [Semce] [SGMCQJ ______________

. . . 1 2
— Seryvice reglstratlon
— conﬁgu re LMAP metrics UView API
. Control plane (host)
collection and management il e Aol Lo oot Lol Lot Algigdigediccate
e N 4)
.. - | LMAP E v
(] 1 1
* DMA memory init 88| i [Management :
R e B — . | RDMA
20 o) ' Memory
S5 | MR ' Region (MR)
O5 + | Management :
\ — »
___ e e e e e e e e e e e e e ’
LMAP 1 LMAP 2 LMAP N
4 £ 0 F —)
[Pre-processing] [Pre-processing] [Pre-processmg]
Description | API Call ;
Manage LMAPID newLMAP(Config, ServicelD) I . . .
LMAP void configLMAP(LMAPID, Dict<ServicelD, List<MetricConfig>) 3 [C“l"et”.?.s] [C'\I"et”.‘f?s] [C'\Iiest;'i‘]fiz r]
void deleteLMAP(LMAPID) , assivar assiner)) R)
Configure MetriclD addMetric(LMAPID, Metric, Type, AggType, Frequency) 5\‘ A v b
Metrics void deleteMetric(LMAPID, MetricID) S
Add Hooks HookID registerHOOk(LiSt(LMAP|D>, HOOan) Data plane (SmartNIC)
Interface Declaration
HookFn void _(Feature, Qutput, AScore)

System architecture

* uView API (one-time cost)

— service registration

— configure LMAP metrics
collection and management

* DMA memory init

 one-sided RDMA READs

— to fetch metrics on data-plane
— no memory copies overhead!

Description | API Call

Manage LMAPID newLMAP(Config, ServicelD)

LMAP void configLMAP(LMAPID, Dict<ServicelD, List<MetricConfig>)
void deleteLMAP(LMAPID)

Configure MetriclD addMetric(LMAPID, Metric, Type, AggType, Frequency)

Metrics void deleteMetric(LMAPID, MetriclD)

Add Hooks | HookID registerHook(List<LMAPID>, HookFn)

Interface Declaration

HookFn void _(Feature, Qutput, AScore)

Containers

orchestrator

|

Service Service
1 2

Service
N

Update
MView API
AW 9.9']!':9'-9'.@’_'?_(_"_‘25_"_) _______________________ Allocate/deallocate
aich 7 \
P L :
A LMAP : ¥
: Management :
! ~—
<> . RDMA
: MR ! Memory <€
| Management Y JeeeiantMiy
\ \—/ 'l
RDMAIREAD
f LMAP 1 LMAP 2 LMAP N \‘
4 £ 0 F —)
[Pre-processing] [Pre-processing] [Pre-processmg]

|

Metrics
Classifier

b

4

Metrics
Classifier
\

|

/

Metrics
Classifier

_

4

~ Dataplane (SmartNIC)

25

Design challenges

Host to SmartNIC data movement \/

— take data outside the host boundaries, without introducing overhead

Jgy] Practicality of anomaly detection

Iz

— lightweight to co-exist with other offloads to IPUs
— determine critical metrics for each service
— adjust to workload shift with minimal reconfiguration effort

26

Anomaly detection

* we borrow from subspace analysis

¢ assume:

— at time (t — 1) we know a non-anomalous metric dataset M;_,

— we can compute its rank-k SVD,(M(;_1)) = UpZy v,

—

t— 1-

M;-1)

|)

m

N ’)
%y \ Vie
l_Y_}
k

_ U, S
m
| J
S
k

* Uy is a good reconstruction basis for datapoints in M;_

27

Anomaly detection

e at time t, we receive a new vector of metrics X

My = M—1y|x
: ¢ 1)| Online learning

no

Evaluate R / \ yes

anomaly score vector for each metric

a=x—-U,Uix

28

Frequent Direction sketch racicaiiy)

Liberty, KDD’ 13

* matrix sketching: replace M; with a smaller matrix S;
— such that S; = M,

matrix
sketching

. i

* run SVD on S,

* streaming operations
— we can compute S; using only S;_; and new datapoint x
— never need of storing M; during runtime

29

Design challenges

—@f Host to SmartNIC data movement

— take data outside the host boundaries, without introducing overhead

'/i\;/i Practicality of anomaly detection V

1

— lightweight to co-exist with other offloads to IPUs
— determine critical metrics for each service
— adjust to workload shift with minimal reconfiguration effort

30

Evaluation setup

4 nodes Kubernetes cluster with Istio service mesh
— NVIDIA BlueField-2 IPU

application workloads

— DeathStarBench (DBS) HotelReservation and Google’s SockShop benchmarks
— synthetic load generation of user requests

metrics collection
— container system resource usage (CPU, memory, I/O, network, ..) via cAdvisor
— service-level e.g., Envoy proxies, Redis key-value stores
— 1 second local streaming interval host = |PU

Memory pressure ChaosMesh [2], stress-ng [30], pmbw [88]
LLC pressure FIRM’s 11c.c [76]

I/O pressure ChaosMesh [2], stress—-ng [30]

CPU usage ChaosMesh [2], stress—-ng [30]

L7 failure redis—-cli [78], ChaosMesh [2]

Table 4: Anomaly injection setup.

31

uwView high fault coverage & low overhead

* Trace violate SLOs when:
— latency above threshold or HTTP/gRPC errors
— threshold : tail latency percentile computed on healthy requests

* Baselines
— tail sampling: always keeps relevant traces, but the collector needs to ingest all traces

— random head sampling: industry de-facto approach

higher lower
better better
100 - 100
§| 75 ! R T [— 75 §
g 2
e 50 I e 1 — 50)
o =
3 >
O 23 [, S

Sockshop DSB Hotel

uView adaptation to dynamic workloads

* frontend service + kubernetes HPA autoscaler

— rescaling rule: service CPU usage above 30%
— maximum capacity 3 replicas

* goal: distinguish two overload conditions
— transient, before rescale [non-anomalous]
— persistent, saturated maximum capacity [anomalous]

Normalized CPU

Anomaly score

right axis
q
load * anomalous (right) —— score (right)
T | - 1.0
40 transient overload ,
| ; 2 . 3 0.8 g
30 - : 3
! 1 - 0.6
20 - i i 14 B
3 / - 0.4 £
10 - ' ' 2
I . 0.2 <
i E ersistent
0 1 1 oAb 0.0

11:30 11:35 11:40 11:45 11:50 11:55 12:00 12:05 12:10

Collection Timestamp

1.00 A
kube_pod_status_phase

0.75 ===« container_file_descriptors
' = container_sockets

online learning

from non-anomalous
/ observed samples

0.50 A1

0.25 A

0.00 -Phiesmbia

11:30 11:35 11:40 11:45 11:50 11:55 12:00 12:05 12:10

35

Summary

Observability overheads at cloud-scale
— remedy in production: coarse-grained sampling ®

ingestion cost dominates overheads, not generation !
— local processing at fine temporal granularity ©

uView: zooming into microservice state in real-time
— informative data, at leverage |IPUs to offload analysis
— practicality
* lightweight streaming anomaly detection => fits IPUs resource constraints
* one-catch-all anomaly threshold

— adaptive to the dynamicity of cloud-native environments

near-optimal fault coverage for distributed tracing
— more use-cases in our paper (soon [))

36

	Slide 1: Metrics, Mayhem, and Microservices: Taming the Cloud Observability Beast
	Slide 2
	Slide 3: Cloud-native applications
	Slide 4: Cloud-native applications: The GOOD
	Slide 5: Cloud-native applications: The BAD
	Slide 6: Cloud-native applications: The UGLY
	Slide 7: Observability
	Slide 8:  Requires monitoring a wealth of data
	Slide 9: Monitoring affects application performance
	Slide 10: Overheads prevent fine-grained analysis
	Slide 11
	Slide 12: Introducing mView
	Slide 13: Introducing mView
	Slide 14: Dissecting the CPU overheads
	Slide 15
	Slide 16
	Slide 17
	Slide 18: Local data: better distributed tracing
	Slide 19
	Slide 20: Infrastructure Processing Units (IPUs)
	Slide 21: mView: in-situ observability
	Slide 22: Design challenges
	Slide 23: System architecture
	Slide 24: System architecture
	Slide 25: System architecture
	Slide 26: Design challenges
	Slide 27: Anomaly detection
	Slide 28: Anomaly detection
	Slide 29: Frequent Direction sketch (practicality!)
	Slide 30: Design challenges
	Slide 31: Evaluation setup
	Slide 34: mView high fault coverage & low overhead
	Slide 35: mView adaptation to dynamic workloads
	Slide 36: Summary

