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Cloud-native applications

Decomposition into independent binaries: microservices

— typically materialized as Linux containers
— interacting through network communication: RPC APIs
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Cloud-native applications: The GOOD

Decomposition into independent binaries: microservices

— typically materialized as Linux containers
— interacting through network communication: RPC APIs
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* Scaling elasticity + development agility



Cloud-native applications: The BAD
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Physical nodes

Failure surface increases!

* Complex stack of software abstractions
— (gray) failures

* It’'s a networked system

— network slowdowns directly translate on
application performance drops



Cloud-native applications: The UGLY

g m R

Why is my application
misbehaving ?

Amazon Social Network

[ASPLOS 2019] Gan Yu et Al, Seer: Leveraging Big Data to Navigate the Complexity of Performance Debugging in Cloud Microservices. 6



Observability

“Is a system property that defines the degree to which the
system can generate actionable insights.

It allows users to understand a system’s state from external
outputs and take (corrective) action.”

[ Cloud Native Computing Fundation (CNCF): https://glossary.cncf.io/observability/ ] 7



https://glossary.cncf.io/observability/

- Requires monitoring a wealth of data
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Monitoring affects application performance

* Today’s observability: massive centralized data collection
— e.g., Netdata, Prometheus

collection cycles
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* at scale, observability interferes with application performance
— monitoring processes and applications share the same resources
— non profitable CPU cycles occupied for monitoring

— can hurt end user performance Don’t collect as often?



Overheads prevent fine-grained analysis

* Microservices update their metrics following RPC requests arrivals
— subsecond-scale variations

* but we sample at coarse timescale

— 10s-1m recommended for Prometheus Sounce Bgfric Timescale

db_keys
keyspace_hits
commands_duration
evicted_key

KV store [78]

ApP RPC
NoSQL DB [69] mongodb_connections
mongodb_op_counters

upstream_rq_active
- = Proxies Envoy [35] upstream_cx_connect_fail RPC

T T . cx_rx_bytes_received
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network_tcp_usage

e it 11cfso_cvcvn?gzrslcy

— hard to reason about cause-effects -

oom_events

tunable

— cannot P recis ely corre Iate S LO Table 1: Representative examples of metrics generated at differ-
Vio |ati ons W|th system ru nti me state ent layers of the microservice’s stack. Timescale is the frequency

at which a metric is generated and/or updated by the source.
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Introducing uView

* We build upon three key insights:

| ) Generation of observability data is cheap, overhead is in ingestion

2 ) Value of local data

* can detect anomalous microservice states and performance issues locally (e.g.,
queue sizes, memory bottlenecks, etc.)

3 ) Rise of IPU accelerators = offload opportunity
* process richer fine-granularity data without imposing CPU overheads on nodes
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Dissecting the CPU overheads

* metrics generation & update
— memory writes

Node

generation
* metrics ingestion:

— memory copies

— serialization & network communication

e .
----------------------------------------

ingestion

@ * we run a microbenchmark:

I — 1 node for Docker containers +

1 node with Prometheus collector
VW NETDATA

Prometheus

all containers
— we vary gen and ing intervals

— cAdpvisor generating 100+ system metrics for
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fine-grained metrics incur low generation overhead...

but must use coarse-grained metrics because of ingestion overhead!

This suggests using a wealth of data locally



| ) Generation of observability data is cheap, overhead is in ingestion

3 ) Rise of IPU accelerators = offload opportunity
* process richer fine-granularity data without imposing CPU overheads on nodes



Local data: better distributed tracing

* tracing
— which services and what latencies during execution graph of user requests

* cannot collect all traces 2 how to maximize “relevant” traces!? Q

— traces violating SLOs uView:“l can

tell you!”

Should | export
this trace ?

OSSO

Local insights useful but processing needs increase




| ) Generation of observability data is cheap, overhead is in ingestion

2 ) Value of local data

* can detect anomalous microservice states and performance issues locally (e.g.,
queue sizes, memory bottlenecks, etc.)




Infrastructure Processing Units (IPUs)

* Programmable network cards (SmartNICs)

— on-path cores = programmable Data Path Accelerator
— off-path cores = SoC with general-purpose cores and OS (Linux)

SmartNIC

e.g., NVIDIA BlueField-3
400Gb/s Ethernet
16 ARM A78 off-path CPU cores
| 6 cores, 256 threads Data Path Accelerator (DPA)

£ 77

HPC/AI
Networking
Security
Storage

Local processing without
CPU overheads on nodes

20



LView: in-situ observability

* uView continuously locally monitors metrics at high temporal resolution

* uView automatically pinpoints anomalies and triggers actionable insights

...... » metrics insights = collected data

. . ’ . .
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Collector
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Design challenges

—@f Host to SmartNIC data movement

— take data outside the host boundaries, without introducing overhead

N ° ° °
I ldl Practicality of anomaly detection
L ghw |
— lightweight to co-exist with other offloads to IPUs
— determine critical metrics for each service
— adjust to workload shift with minimal reconfiguration effort

22



LMAP: Local Metrics Analysis

Pipeline

* one LMAP per service

|

Containers
orchestrator

|

System architecture
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System architecture

* uwView API (one-time cost) [ Semce] [SGMCQJ ______________
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System architecture

* uView API (one-time cost)

— service registration

— configure LMAP metrics
collection and management

* DMA memory init

 one-sided RDMA READs

— to fetch metrics on data-plane
— no memory copies overhead!

Description | API Call

Manage LMAPID newLMAP(Config, ServicelD)

LMAP void configLMAP(LMAPID, Dict<ServicelD, List<MetricConfig>)
void deleteLMAP(LMAPID)

Configure MetriclD addMetric(LMAPID, Metric, Type, AggType, Frequency)

Metrics void deleteMetric(LMAPID, MetriclD)

Add Hooks | HookID registerHook(List<LMAPID>, HookFn)

Interface Declaration

HookFn void _(Feature, Qutput, AScore)
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Design challenges

# Host to SmartNIC data movement \/

— take data outside the host boundaries, without introducing overhead

Jgy] Practicality of anomaly detection

Iz

— lightweight to co-exist with other offloads to IPUs
— determine critical metrics for each service
— adjust to workload shift with minimal reconfiguration effort

26



Anomaly detection

* we borrow from subspace analysis

¢ assume:

— at time (t — 1) we know a non-anomalous metric dataset M;_,

— we can compute its rank-k SVD,(M(;_1)) = UpZy v,

—

t— 1-

M;-1)

| )

m

N ’ )
%y \ Vie
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k
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S
k

* Uy is a good reconstruction basis for datapoints in M;_
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Anomaly detection

e at time t, we receive a new vector of metrics X

My = M—1y|x
: ¢ 1)| Online learning

no

Evaluate R / \ yes

anomaly score vector for each metric

a=x—-U,Uix

28



Frequent Direction sketch racicaiiy)

Liberty, KDD’ 13

* matrix sketching: replace M; with a smaller matrix S;
— such that S; = M,

matrix
sketching

. i

* run SVD on S,

* streaming operations
— we can compute S; using only S;_; and new datapoint x
— never need of storing M; during runtime

29



Design challenges

—@f Host to SmartNIC data movement

— take data outside the host boundaries, without introducing overhead

'/i\;/i Practicality of anomaly detection V

1

— lightweight to co-exist with other offloads to IPUs
— determine critical metrics for each service
— adjust to workload shift with minimal reconfiguration effort

30



Evaluation setup

4 nodes Kubernetes cluster with Istio service mesh
— NVIDIA BlueField-2 IPU

application workloads

— DeathStarBench (DBS) HotelReservation and Google’s SockShop benchmarks
— synthetic load generation of user requests

metrics collection
— container system resource usage (CPU, memory, I/O, network, ..) via cAdvisor
— service-level e.g., Envoy proxies, Redis key-value stores
— 1 second local streaming interval host = |PU

Memory pressure  ChaosMesh [2], stress-ng [30], pmbw [88]
LLC pressure FIRM’s 11c.c [76]

I/O pressure ChaosMesh [2], stress—-ng [30]

CPU usage ChaosMesh [2], stress—-ng [30]

L7 failure redis—-cli [78], ChaosMesh [2]

Table 4: Anomaly injection setup.
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uwView high fault coverage & low overhead

* Trace violate SLOs when:
— latency above threshold  or HTTP/gRPC errors
— threshold : tail latency percentile computed on healthy requests

* Baselines
— tail sampling: always keeps relevant traces, but the collector needs to ingest all traces

— random head sampling: industry de-facto approach

higher lower
better better
100 - 100
§| 75 ! R T [ — 75 §
g 2
e 50 I e 1 — 50 )
o =
3 >
O 23 [, S

Sockshop DSB Hotel



uView adaptation to dynamic workloads

* frontend service + kubernetes HPA autoscaler

— rescaling rule: service CPU usage above 30%
— maximum capacity 3 replicas

* goal: distinguish two overload conditions
— transient, before rescale [non-anomalous]
— persistent, saturated maximum capacity [anomalous]

Normalized CPU

Anomaly score

right axis
q
load * anomalous (right) —— score (right)
T | - 1.0
40 transient overload ,
| ; 2 . 3 0.8 g
30 - : 3
! 1 - 0.6
20 - i i 14 B
3 / - 0.4 £
10 - ' ' 2
I . 0.2 <
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0 1 1 oAb 0.0

11:30 11:35 11:40 11:45 11:50 11:55 12:00 12:05 12:10

Collection Timestamp

1.00 A
kube_pod_status_phase

0.75 ===« container_file_descriptors
' = container_sockets

online learning

from non-anomalous
/ observed samples

0.50 A1

0.25 A

0.00 -Phiesmbia

11:30 11:35 11:40 11:45 11:50 11:55 12:00 12:05 12:10
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Summary

Observability overheads at cloud-scale
— remedy in production: coarse-grained sampling ®

ingestion cost dominates overheads, not generation !
— local processing at fine temporal granularity ©

uView: zooming into microservice state in real-time
— informative data, at leverage |IPUs to offload analysis
— practicality
* lightweight streaming anomaly detection => fits IPUs resource constraints
* one-catch-all anomaly threshold

— adaptive to the dynamicity of cloud-native environments

near-optimal fault coverage for distributed tracing
— more use-cases in our paper (soon [))
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