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2025 Public cloud computing market size estimated at $723 billion | Statista
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Cloud-native applications

Decomposition into independent binaries: microservices

― typically materialized as Linux containers

― interacting through network communication: RPC APIs
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Cloud-native applications: The GOOD

Decomposition into independent binaries: microservices

― typically materialized as Linux containers

― interacting through network communication: RPC APIs
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• Scaling elasticity + development agility



Cloud-native applications: The BAD

Failure surface increases!

• Complex stack of software abstractions 
― (gray) failures

• It’s a networked system

― network slowdowns directly translate on 
application performance drops
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[ASPLOS 2019] Gan Yu et Al., Seer: Leveraging Big Data to Navigate the Complexity of Performance Debugging in Cloud Microservices. 

Why is my application 

misbehaving ? 

Cloud-native applications: The UGLY



Observability

“Is a system property that defines the degree to which the 
system can generate actionable insights. 

It allows users to understand a system’s state from external 
outputs and take (corrective) action.”

7[ Cloud Native Computing Fundation (CNCF): https://glossary.cncf.io/observability/ ]

https://glossary.cncf.io/observability/
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→ Requires monitoring a wealth of data

Challenging!



Monitoring affects application performance

• Today’s observability: massive centralized data collection

― e.g., Netdata, Prometheus

• at scale, observability interferes with application performance
―monitoring processes and applications share the same resources

― non profitable CPU cycles occupied for monitoring

― can hurt end user performance
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collection cycles

[ATC 2022] Zhe Wang et Al., Zero Overhead Monitoring for Cloud-native Applications. 

Don’t collect as often?



Overheads prevent fine-grained analysis

• but we sample at coarse timescale

― 10s-1m recommended for Prometheus

― hard to reason about cause-effects

― cannot precisely correlate SLO 
violations with system runtime state
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• Microservices update their metrics following RPC requests arrivals

― subsecond-scale variations
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Introducing View 

• We build upon three key insights:
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1 ) Generation of observability data is cheap, overhead is in ingestion

2 ) Value of local data
• can detect anomalous microservice states and performance issues locally  (e.g., 

queue sizes, memory bottlenecks, etc.)

3 ) Rise of IPU accelerators → offload opportunity 
• process richer fine-granularity data without imposing CPU overheads on nodes
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Dissecting the CPU overheads

• metrics generation & update

―memory writes

• metrics ingestion:

―memory copies

― serialization & network communication

generation >=<   ingestion

• we run a microbenchmark:

― 1 node for Docker containers +
1 node with Prometheus collector

― cAdvisor generating 100+ system metrics for 
all containers

―we vary gen and ing intervals
14
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fine-grained metrics incur low generation overhead…

but must use coarse-grained metrics because of ingestion overhead!
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This suggests using a wealth of data locally



17

1 ) Generation of observability data is cheap, overhead is in ingestion

2 ) Value of local data
• can detect anomalous microservice states and performance issues locally  (e.g., 

queue sizes, memory bottlenecks, etc.)

3 ) Rise of IPU accelerators → offload opportunity 
• process richer fine-granularity data without imposing CPU overheads on nodes



Local data: better distributed tracing

• tracing

―which services and what latencies during execution graph of user requests

• cannot collect all traces → how to maximize “relevant” traces?
― traces violating SLOs
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trace “span”

Should I export 

this trace ?

detected anomaly!  raise insight

View: “I can 

tell you!”

Local insights useful but processing needs increase
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1 ) Generation of observability data is cheap, overhead is in ingestion

2 ) Value of local data
• can detect anomalous microservice states and performance issues locally  (e.g., 

queue sizes, memory bottlenecks, etc.)

3 ) Rise of IPU accelerators → offload opportunity 
• process richer fine-granularity data without imposing CPU overheads on nodes



• Programmable network cards (SmartNICs) 

― on-path cores → programmable Data Path Accelerator

― off-path cores → SoC with general-purpose cores and OS (Linux)
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SmartNIC

e.g., NVIDIA BlueField-3 

400Gb/s Ethernet 
16 ARM A78 off-path CPU cores

16 cores, 256 threads Data Path Accelerator (DPA)

Infrastructure Processing Units (IPUs)

HPC/AI

Networking

Security

Storage

Local processing without 

CPU overheads on nodes



View: in-situ observability

• View continuously locally monitors metrics at high temporal resolution

• View automatically pinpoints anomalies and triggers actionable insights
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• by leveraging View’s insights, 
observability libraries can improve 
sampling quality

― capture informative data

― reduce clutter



Design challenges

― take data outside the host boundaries, without introducing overhead
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Host to SmartNIC data movement

― lightweight to co-exist with other offloads to IPUs

― determine critical metrics for each service

― adjust to workload shift with minimal reconfiguration effort

Practicality of anomaly detection



System architecture

LMAP: Local Metrics Analysis 
Pipeline

• one LMAP per service
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System architecture
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• View API (one-time cost) 
― service registration

― configure LMAP metrics 
collection and management

• DMA memory init



System architecture
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• View API (one-time cost)
― service registration

― configure LMAP metrics 
collection and management

• DMA memory init

• one-sided RDMA READs
― to fetch metrics on data-plane

― no memory copies overhead!



Design challenges

― take data outside the host boundaries, without introducing overhead
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Host to SmartNIC data movement

― lightweight to co-exist with other offloads to IPUs

― determine critical metrics for each service

― adjust to workload shift with minimal reconfiguration effort

Practicality of anomaly detection



Anomaly detection
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• we borrow from subspace analysis 

• assume:

― at time (𝑡 − 1) we know a non-anomalous metric dataset 𝑀(𝑡−1)

―we can compute its rank-k  SVDk(𝑀(𝑡−1)) = 𝑈𝑘Σk 𝑉𝑘
𝑇

𝑀(𝑡−1) 𝑈𝑘

Σk
𝑉𝑘

𝑇

𝑡 − 1

m

=

k

k m

• 𝑈𝑘 is a good reconstruction basis for datapoints in 𝑀(𝑡−1)  



Anomaly detection
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•  at time 𝑡, we receive a new vector of metrics 𝒙

𝜶 = 𝒙 − 𝑈𝑘𝑈𝑘
𝑇𝒙

SVD

Evaluate 

reconstruction error

Online learning

no

yes
output 𝜶𝒙

𝑈𝑘

𝑀𝑡 = 𝑀(𝑡−1)|𝒙

anomaly score vector for each metric

SVD

∥ 𝜶 ∥ > 𝛾



Frequent Direction sketch  (practicality!)
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𝑀𝑡𝑡

m

𝑆𝑡

matrix 

sketching

• matrix sketching:  replace 𝑀𝑡 with a smaller matrix 𝑆𝑡

― such that   𝑆𝑡 ≈ 𝑀𝑡 

• run SVD on 𝑆𝑡

• streaming operations
―we can compute 𝑆𝑡 using only 𝑆𝑡−1 and new datapoint 𝒙

― never need of storing 𝑀𝑡 during runtime

Liberty, KDD’13



Design challenges

― take data outside the host boundaries, without introducing overhead
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Host to SmartNIC data movement

― lightweight to co-exist with other offloads to IPUs

― determine critical metrics for each service

― adjust to workload shift with minimal reconfiguration effort

Practicality of anomaly detection



Evaluation setup

• 4 nodes Kubernetes cluster with Istio service mesh

― NVIDIA BlueField-2 IPU

• application workloads

― DeathStarBench (DBS) HotelReservation and Google’s SockShop benchmarks

― synthetic load generation of user requests

• metrics collection 

― container system resource usage (CPU, memory, I/O, network, ..) via cAdvisor

― service-level e.g., Envoy proxies, Redis key-value stores

― 1 second local streaming interval host → IPU

• anomaly injection via chaos-engineering
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View high fault coverage & low overhead

• Trace violate SLOs when:

― latency above threshold      or       HTTP/gRPC errors

― threshold : tail latency percentile computed on healthy requests

• Baselines
― tail sampling: always keeps relevant traces, but the collector needs to ingest all traces 

― random head sampling:  industry de-facto approach

34
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𝜸

right axis

View adaptation to dynamic workloads

35

• frontend service + kubernetes HPA autoscaler

― rescaling rule:  service CPU usage above 30%

― maximum capacity 3 replicas

• goal: distinguish two overload conditions
― transient, before rescale [non-anomalous]

― persistent, saturated maximum capacity [anomalous]

transient overload

persistent

online learning 

from non-anomalous 
observed samples

1 2 3



Summary

• Observability overheads at cloud-scale 
― remedy in production: coarse-grained sampling 

• ingestion cost dominates overheads, not generation !
― local processing at fine temporal granularity ☺

• µView: zooming into microservice state in real-time
― informative data, at low overhead (leverage IPUs to offload analysis)

― practicality
• lightweight streaming anomaly detection → fits IPUs resource constraints  

• one-catch-all anomaly threshold 

― adaptive to the dynamicity of cloud-native environments

• near-optimal fault coverage for distributed tracing
― more use-cases in our paper (soon )
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