
Metrics, Mayhem, and Microservices:
Taming the Cloud Observability Beast

Alessandro Cornacchia, Theophilus A. Benson, M. Bilal, Marco Canini

sands.kaust.edu.sa | marco@kaust.edu.sa

Academic Salon on High-Performance Ethernet: Host Networking and Monitoring (TUM) | Mar ’25

https://sands.kaust.edu.sa/

Etc.

2025 Public cloud computing market size estimated at $723 billion | Statista

AI Data

Analytics

Scientific

Computing

Entertainment,

VoD, Social

Networks

Enterprise

Services, CRM
Collaborative

tools

Storage
Source: Flaticon

2

Cloud-native applications

Decomposition into independent binaries: microservices

― typically materialized as Linux containers

― interacting through network communication: RPC APIs

3

frontend
checkout

pay

advertise

recommend

cart

user

www.kaustshop.sa/get_products
RPC

module = microservice in e.g., Docker isolated runtime

Cloud-native applications: The GOOD

Decomposition into independent binaries: microservices

― typically materialized as Linux containers

― interacting through network communication: RPC APIs

4

frontend checkoutpayadvertise recommend cart

frontend recommend

compute node compute node compute node

• Scaling elasticity + development agility

Cloud-native applications: The BAD

Failure surface increases!

• Complex stack of software abstractions
― (gray) failures

• It’s a networked system

― network slowdowns directly translate on
application performance drops

5

6
[ASPLOS 2019] Gan Yu et Al., Seer: Leveraging Big Data to Navigate the Complexity of Performance Debugging in Cloud Microservices.

Why is my application

misbehaving ?

Cloud-native applications: The UGLY

Observability

“Is a system property that defines the degree to which the
system can generate actionable insights.

It allows users to understand a system’s state from external
outputs and take (corrective) action.”

7[Cloud Native Computing Fundation (CNCF): https://glossary.cncf.io/observability/]

https://glossary.cncf.io/observability/

8

→ Requires monitoring a wealth of data

Challenging!

Monitoring affects application performance

• Today’s observability: massive centralized data collection

― e.g., Netdata, Prometheus

• at scale, observability interferes with application performance
―monitoring processes and applications share the same resources

― non profitable CPU cycles occupied for monitoring

― can hurt end user performance

9

collection cycles

[ATC 2022] Zhe Wang et Al., Zero Overhead Monitoring for Cloud-native Applications.

Don’t collect as often?

Overheads prevent fine-grained analysis

• but we sample at coarse timescale

― 10s-1m recommended for Prometheus

― hard to reason about cause-effects

― cannot precisely correlate SLO
violations with system runtime state

10

• Microservices update their metrics following RPC requests arrivals

― subsecond-scale variations

11

coverage

(or accuracy)

overhead

state-of-the-art

(coarse-grained

sampling)

µView

observability bloat

We want to

be here!

Introducing View

• We build upon three key insights:

12

1) Generation of observability data is cheap, overhead is in ingestion

2) Value of local data
• can detect anomalous microservice states and performance issues locally (e.g.,

queue sizes, memory bottlenecks, etc.)

3) Rise of IPU accelerators → offload opportunity
• process richer fine-granularity data without imposing CPU overheads on nodes

Introducing View

• We build upon three key insights:

13

1) Generation of observability data is cheap, overhead is in ingestion

2) Value of local data
• can detect anomalous microservice states and performance issues locally (e.g.,

queue sizes, memory bottlenecks, etc.)

3) Rise of IPU accelerators → offload opportunity
• process richer fine-granularity data without imposing CPU overheads on nodes

Dissecting the CPU overheads

• metrics generation & update

―memory writes

• metrics ingestion:

―memory copies

― serialization & network communication

generation >=< ingestion

• we run a microbenchmark:

― 1 node for Docker containers +
1 node with Prometheus collector

― cAdvisor generating 100+ system metrics for
all containers

―we vary gen and ing intervals
14

ingestion

Node

App

net

generation

OS

?

15

+2% +4%

+20%

cAdvisor’s

CPU consumption

fine-grained metrics incur low generation overhead…

but must use coarse-grained metrics because of ingestion overhead!

16

+2% +4%

+20%

+15%
+18%

+50%

cAdvisor’s

CPU consumption

This suggests using a wealth of data locally

17

1) Generation of observability data is cheap, overhead is in ingestion

2) Value of local data
• can detect anomalous microservice states and performance issues locally (e.g.,

queue sizes, memory bottlenecks, etc.)

3) Rise of IPU accelerators → offload opportunity
• process richer fine-granularity data without imposing CPU overheads on nodes

Local data: better distributed tracing

• tracing

―which services and what latencies during execution graph of user requests

• cannot collect all traces → how to maximize “relevant” traces?
― traces violating SLOs

18

trace “span”

Should I export

this trace ?

detected anomaly! raise insight

View: “I can

tell you!”

Local insights useful but processing needs increase

19

1) Generation of observability data is cheap, overhead is in ingestion

2) Value of local data
• can detect anomalous microservice states and performance issues locally (e.g.,

queue sizes, memory bottlenecks, etc.)

3) Rise of IPU accelerators → offload opportunity
• process richer fine-granularity data without imposing CPU overheads on nodes

• Programmable network cards (SmartNICs)

― on-path cores → programmable Data Path Accelerator

― off-path cores → SoC with general-purpose cores and OS (Linux)

20

SmartNIC

e.g., NVIDIA BlueField-3

400Gb/s Ethernet
16 ARM A78 off-path CPU cores

16 cores, 256 threads Data Path Accelerator (DPA)

Infrastructure Processing Units (IPUs)

HPC/AI

Networking

Security

Storage

Local processing without

CPU overheads on nodes

View: in-situ observability

• View continuously locally monitors metrics at high temporal resolution

• View automatically pinpoints anomalies and triggers actionable insights

21

• by leveraging View’s insights,
observability libraries can improve
sampling quality

― capture informative data

― reduce clutter

Design challenges

― take data outside the host boundaries, without introducing overhead

22

Host to SmartNIC data movement

― lightweight to co-exist with other offloads to IPUs

― determine critical metrics for each service

― adjust to workload shift with minimal reconfiguration effort

Practicality of anomaly detection

System architecture

LMAP: Local Metrics Analysis
Pipeline

• one LMAP per service

23

System architecture

24

• View API (one-time cost)
― service registration

― configure LMAP metrics
collection and management

• DMA memory init

System architecture

25

• View API (one-time cost)
― service registration

― configure LMAP metrics
collection and management

• DMA memory init

• one-sided RDMA READs
― to fetch metrics on data-plane

― no memory copies overhead!

Design challenges

― take data outside the host boundaries, without introducing overhead

26

Host to SmartNIC data movement

― lightweight to co-exist with other offloads to IPUs

― determine critical metrics for each service

― adjust to workload shift with minimal reconfiguration effort

Practicality of anomaly detection

Anomaly detection

27

• we borrow from subspace analysis

• assume:

― at time (𝑡 − 1) we know a non-anomalous metric dataset 𝑀(𝑡−1)

―we can compute its rank-k SVDk(𝑀(𝑡−1)) = 𝑈𝑘Σk 𝑉𝑘
𝑇

𝑀(𝑡−1) 𝑈𝑘

Σk
𝑉𝑘

𝑇

𝑡 − 1

m

=

k

k m

• 𝑈𝑘 is a good reconstruction basis for datapoints in 𝑀(𝑡−1)

Anomaly detection

28

• at time 𝑡, we receive a new vector of metrics 𝒙

𝜶 = 𝒙 − 𝑈𝑘𝑈𝑘
𝑇𝒙

SVD

Evaluate

reconstruction error

Online learning

no

yes
output 𝜶𝒙

𝑈𝑘

𝑀𝑡 = 𝑀(𝑡−1)|𝒙

anomaly score vector for each metric

SVD

∥ 𝜶 ∥ > 𝛾

Frequent Direction sketch (practicality!)

29

𝑀𝑡𝑡

m

𝑆𝑡

matrix

sketching

• matrix sketching: replace 𝑀𝑡 with a smaller matrix 𝑆𝑡

― such that 𝑆𝑡 ≈ 𝑀𝑡

• run SVD on 𝑆𝑡

• streaming operations
―we can compute 𝑆𝑡 using only 𝑆𝑡−1 and new datapoint 𝒙

― never need of storing 𝑀𝑡 during runtime

Liberty, KDD’13

Design challenges

― take data outside the host boundaries, without introducing overhead

30

Host to SmartNIC data movement

― lightweight to co-exist with other offloads to IPUs

― determine critical metrics for each service

― adjust to workload shift with minimal reconfiguration effort

Practicality of anomaly detection

Evaluation setup

• 4 nodes Kubernetes cluster with Istio service mesh

― NVIDIA BlueField-2 IPU

• application workloads

― DeathStarBench (DBS) HotelReservation and Google’s SockShop benchmarks

― synthetic load generation of user requests

• metrics collection

― container system resource usage (CPU, memory, I/O, network, ..) via cAdvisor

― service-level e.g., Envoy proxies, Redis key-value stores

― 1 second local streaming interval host → IPU

• anomaly injection via chaos-engineering

31

View high fault coverage & low overhead

• Trace violate SLOs when:

― latency above threshold or HTTP/gRPC errors

― threshold : tail latency percentile computed on healthy requests

• Baselines
― tail sampling: always keeps relevant traces, but the collector needs to ingest all traces

― random head sampling: industry de-facto approach

34

higher

better
lower

better

𝜸

right axis

View adaptation to dynamic workloads

35

• frontend service + kubernetes HPA autoscaler

― rescaling rule: service CPU usage above 30%

― maximum capacity 3 replicas

• goal: distinguish two overload conditions
― transient, before rescale [non-anomalous]

― persistent, saturated maximum capacity [anomalous]

transient overload

persistent

online learning

from non-anomalous
observed samples

1 2 3

Summary

• Observability overheads at cloud-scale
― remedy in production: coarse-grained sampling

• ingestion cost dominates overheads, not generation !
― local processing at fine temporal granularity ☺

• µView: zooming into microservice state in real-time
― informative data, at low overhead (leverage IPUs to offload analysis)

― practicality
• lightweight streaming anomaly detection → fits IPUs resource constraints

• one-catch-all anomaly threshold

― adaptive to the dynamicity of cloud-native environments

• near-optimal fault coverage for distributed tracing
― more use-cases in our paper (soon)

36

	Slide 1: Metrics, Mayhem, and Microservices: Taming the Cloud Observability Beast
	Slide 2
	Slide 3: Cloud-native applications
	Slide 4: Cloud-native applications: The GOOD
	Slide 5: Cloud-native applications: The BAD
	Slide 6: Cloud-native applications: The UGLY
	Slide 7: Observability
	Slide 8: Requires monitoring a wealth of data
	Slide 9: Monitoring affects application performance
	Slide 10: Overheads prevent fine-grained analysis
	Slide 11
	Slide 12: Introducing mView
	Slide 13: Introducing mView
	Slide 14: Dissecting the CPU overheads
	Slide 15
	Slide 16
	Slide 17
	Slide 18: Local data: better distributed tracing
	Slide 19
	Slide 20: Infrastructure Processing Units (IPUs)
	Slide 21: mView: in-situ observability
	Slide 22: Design challenges
	Slide 23: System architecture
	Slide 24: System architecture
	Slide 25: System architecture
	Slide 26: Design challenges
	Slide 27: Anomaly detection
	Slide 28: Anomaly detection
	Slide 29: Frequent Direction sketch (practicality!)
	Slide 30: Design challenges
	Slide 31: Evaluation setup
	Slide 34: mView high fault coverage & low overhead
	Slide 35: mView adaptation to dynamic workloads
	Slide 36: Summary

