Metrics, Mayhem, and Microservices: Taming the Cloud Observability Beast

Alessandro Cornacchia, Theophilus A. Benson, M. Bilal, Marco Canini

Carnegie

University

Unbabel

KAUST

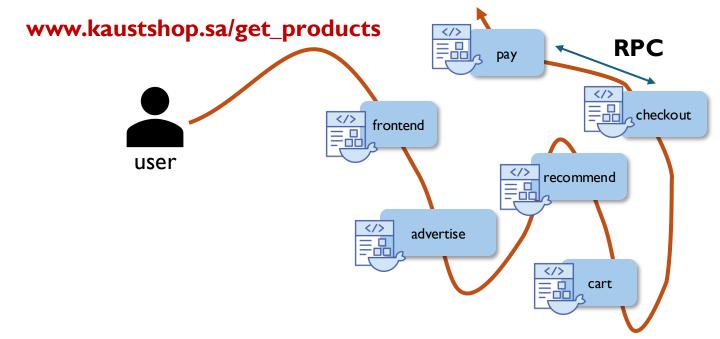
sands.kaust.edu.sa | marco@kaust.edu.sa

2025 Public cloud computing market size estimated at \$723 billion | Statista

Cloud-native applications

Decomposition into independent binaries: microservices

- typically materialized as Linux containers
- interacting through network communication: RPC APIs

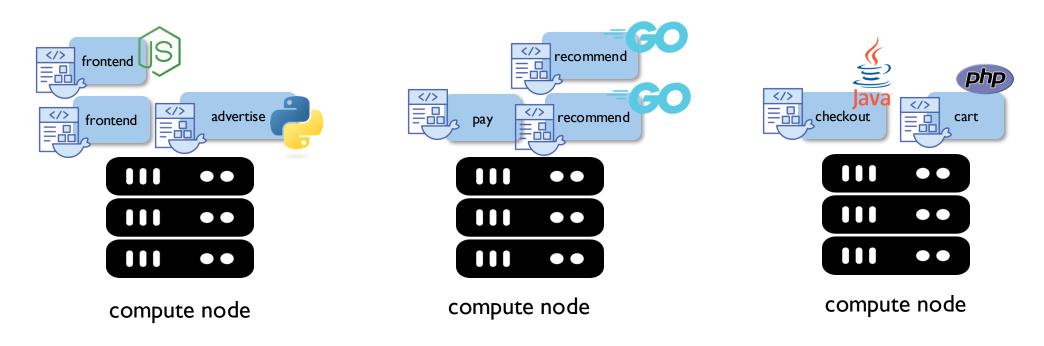


</>

Cloud-native applications: The GOOD

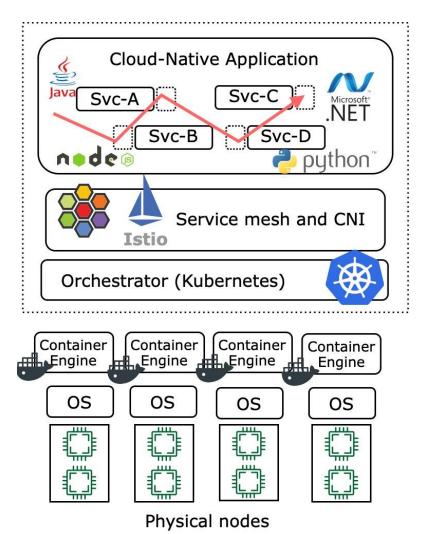
Decomposition into independent binaries: microservices

- typically materialized as Linux containers
- interacting through network communication: RPC APIs



• Scaling elasticity + development agility

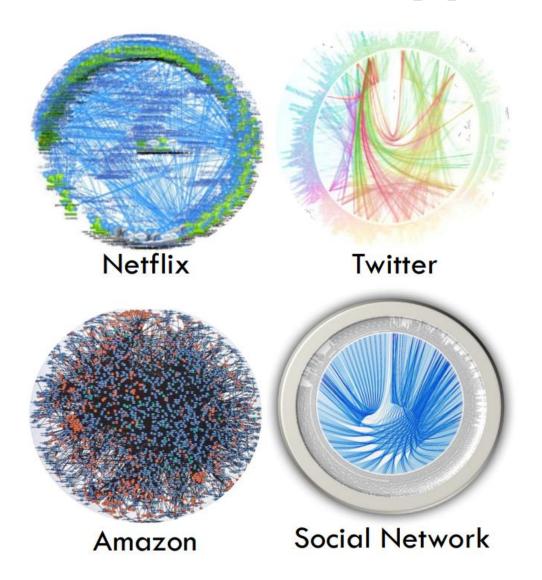
Cloud-native applications: The BAD



Failure surface increases!

- Complex stack of software abstractions — (gray) failures
- It's a networked system
 - network slowdowns directly translate on application performance drops

Cloud-native applications: The UGLY



Why is my application misbehaving ?

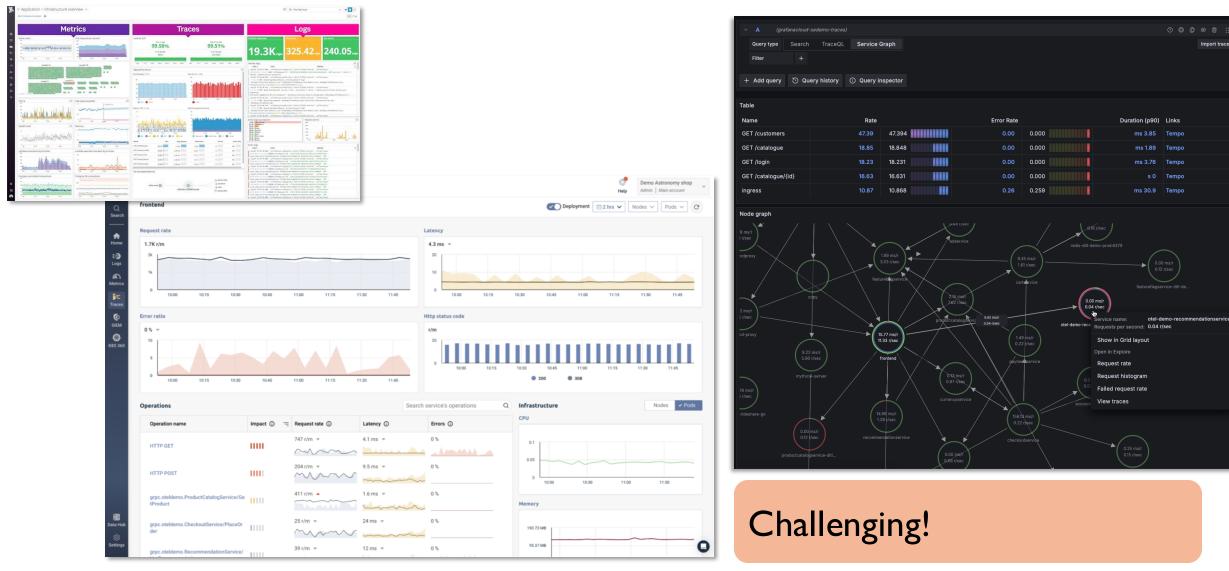
[ASPLOS 2019] Gan Yu et Al., Seer: Leveraging Big Data to Navigate the Complexity of Performance Debugging in Cloud Microservices.

Observability

"Is a system property that defines the degree to which the system can generate actionable insights.

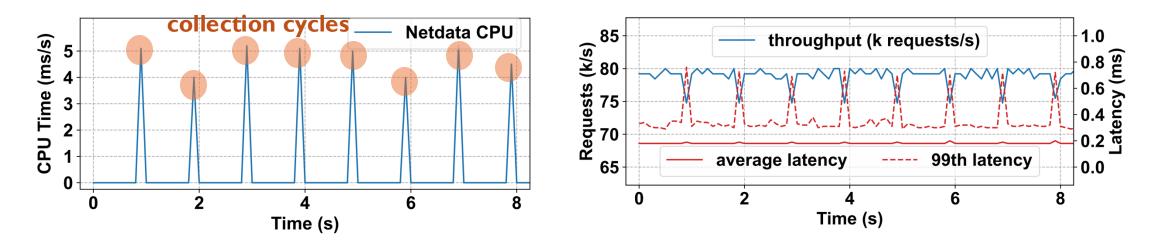
It allows users to understand a system's state from external outputs and take (corrective) action."

→ Requires monitoring a wealth of data



Monitoring affects application performance

- Today's observability: massive centralized data collection
 - e.g., Netdata, Prometheus

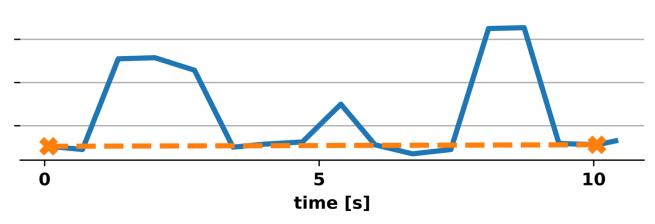


- at scale, observability interferes with application performance
 - monitoring processes and applications share the same resources
 - non profitable CPU cycles occupied for monitoring
 - can hurt end user performance

Don't collect as often?

Overheads prevent fine-grained analysis

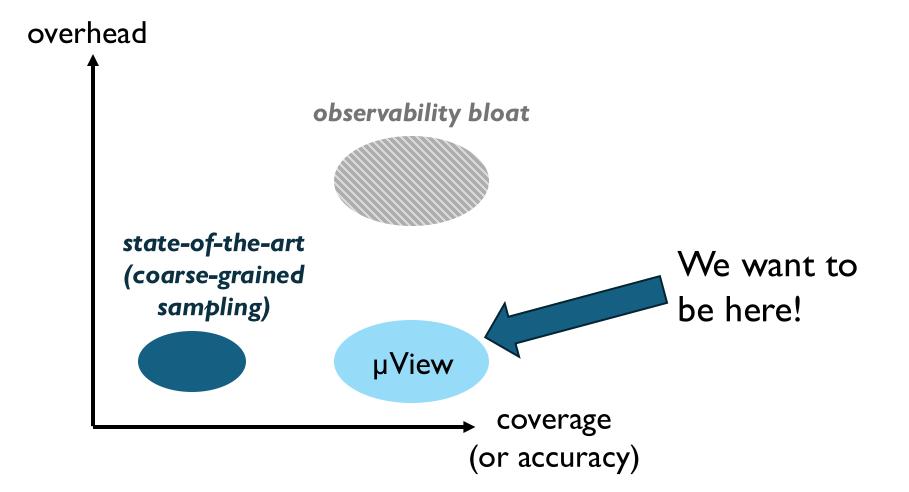
- Microservices update their metrics following RPC requests arrivals
 - subsecond-scale variations
- but we sample at coarse timescale
 - 10s-1m recommended for Prometheus



Source		Metric	Timescale
App	KV store [78]	db_keys keyspace_hits commands_duration evicted_key	RPC
	NoSQL DB [69]	mongodb_connections mongodb_op_counters	
Proxies	Envoy [35]	upstream_rq_active upstream_cx_connect_fail cx_rx_bytes_received cx_tx_bytes_sent	RPC
OS	cAdvisor [40]	cpu_usage_seconds network_tcp_usage fs_writes llc_occupancy processes oom_events	tunable

- hard to reason about cause-effects
- cannot precisely correlate SLO violations with system runtime state

Table 1: Representative examples of metrics generated at differ-
ent layers of the microservice's stack. Timescale is the frequency
at which a metric is generated and/or updated by the source.



Introducing μ View

• We build upon three key insights:

I) Generation of observability data is cheap, overhead is in ingestion

2) Value of local data

 can detect anomalous microservice states and performance issues locally (e.g., queue sizes, memory bottlenecks, etc.)

3) Rise of IPU accelerators \rightarrow offload opportunity

• process richer fine-granularity data without imposing CPU overheads on nodes

Introducing μ View

• We build upon three key insights:

I) Generation of observability data is cheap, overhead is in ingestion

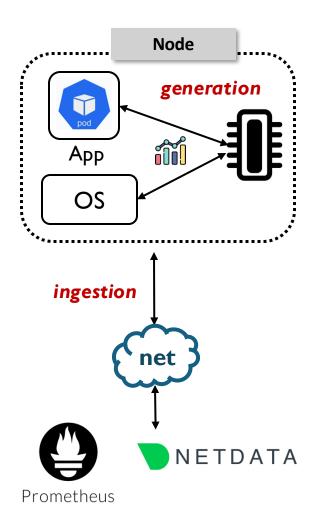
2) Value of local data

• can detect anomalous microservice states and performance issues locally (e.g., queue sizes, memory bottlenecks, etc.)

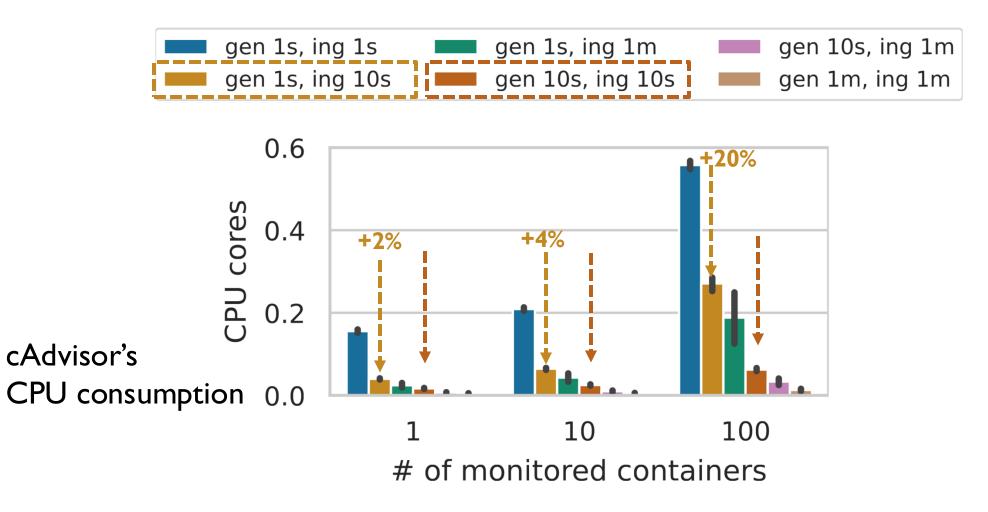
3) Rise of IPU accelerators \rightarrow offload opportunity

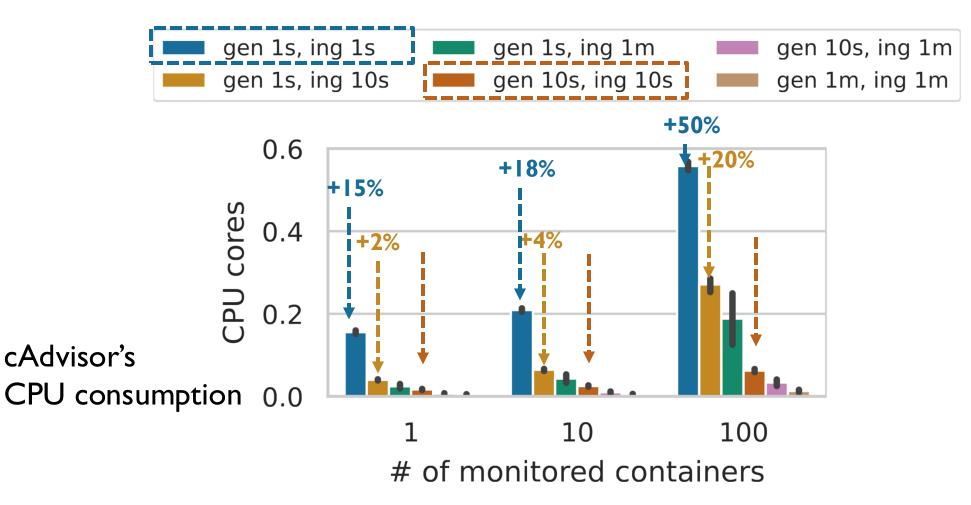
• process richer fine-granularity data without imposing CPU overheads on nodes

Dissecting the CPU overheads



- metrics generation & update
 - memory writes
- metrics **ingestion**:
 - memory copies
 - serialization & network communication
 - generation
 ingestion
- we run a microbenchmark:
 - 1 node for Docker containers +
 1 node with Prometheus collector
 - cAdvisor generating 100+ system metrics for all containers
 - we vary gen and ing intervals





fine-grained metrics incur low generation overhead...

but must use coarse-grained metrics because of ingestion overhead!

This suggests using a wealth of data locally

I) Generation of observability data is cheap, overhead is in ingestion

2) Value of local data

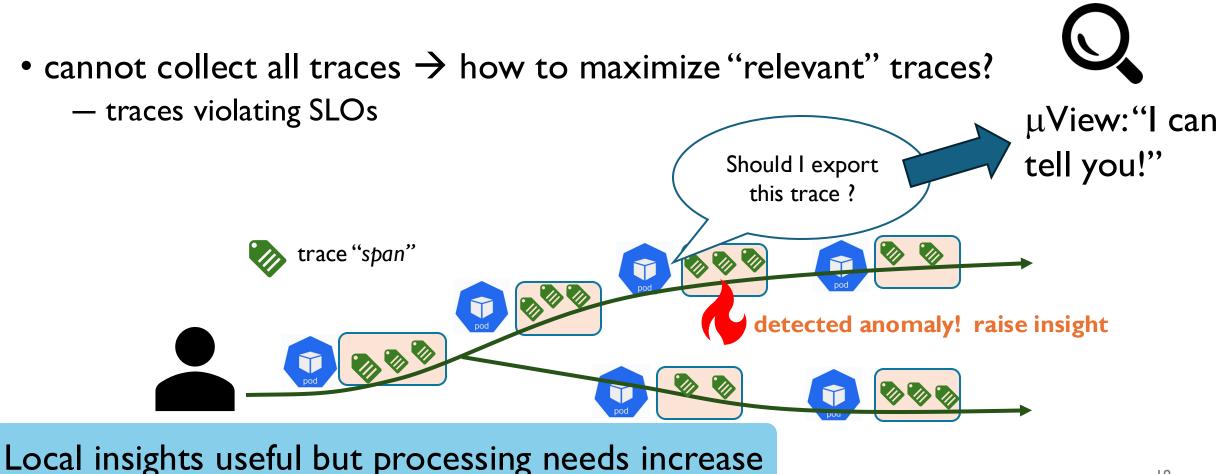
 can detect anomalous microservice states and performance issues locally (e.g., queue sizes, memory bottlenecks, etc.)

3) Rise of IPU accelerators \rightarrow offload opportunity

• process richer fine-granularity data without imposing CPU overheads on nodes

Local data: better distributed tracing

- tracing
 - which services and what latencies during execution graph of user requests



I) Generation of observability data is cheap, overhead is in ingestion

2) Value of local data

• can detect anomalous microservice states and performance issues locally (e.g., queue sizes, memory bottlenecks, etc.)

3) Rise of IPU accelerators \rightarrow offload opportunity

• process richer fine-granularity data without imposing CPU overheads on nodes

Infrastructure Processing Units (IPUs)

- Programmable network cards (SmartNICs)
 - on-path cores \rightarrow programmable Data Path Accelerator
 - off-path cores \rightarrow SoC with general-purpose cores and OS (Linux)

SmartNIC e.g., NVIDIA BlueField-3 400Gb/s Ethernet I 6 ARM A78 off-path CPU cores I 6 cores, 256 threads Data Path Accelerator (DPA)

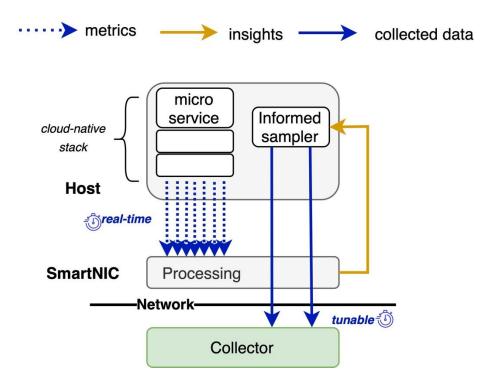
HPC/AI Networking Security Storage

Local processing without CPU overheads on nodes

$\mu \text{View: in-situ observability}$

- μ View continuously locally monitors metrics at high temporal resolution
- μ View automatically pinpoints anomalies and triggers actionable insights

- by leveraging μView's insights, observability libraries can improve sampling quality
 - capture informative data
 - reduce clutter



Design challenges

Host to SmartNIC data movement

- take data outside the host boundaries, without introducing overhead

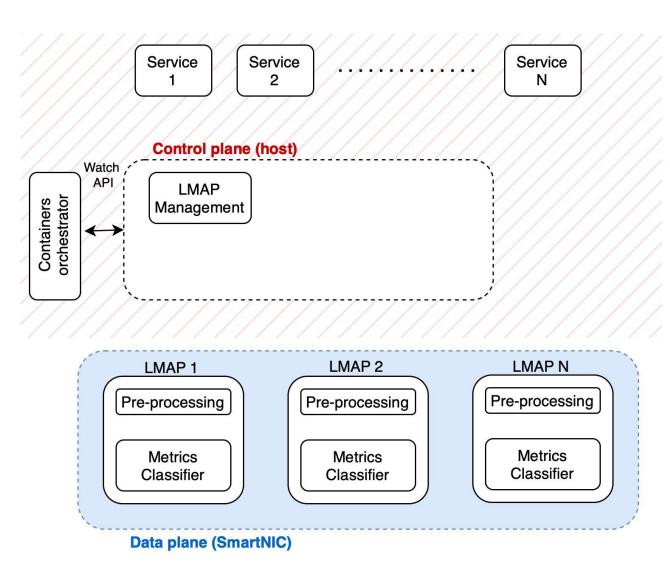
Practicality of anomaly detection

- lightweight to co-exist with other offloads to IPUs
- determine critical metrics for each service
- adjust to workload shift with minimal reconfiguration effort

System architecture

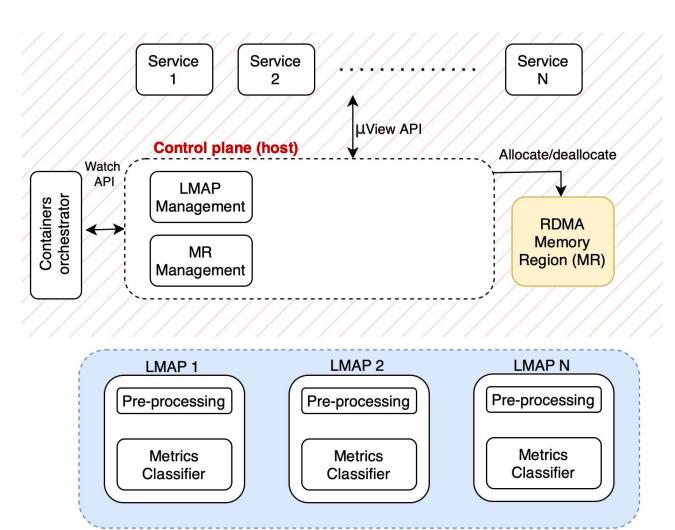
LMAP: Local Metrics Analysis Pipeline

• one LMAP per service



System architecture

- µView API (one-time cost)
 - service registration
 - configure LMAP metrics collection and management
- DMA memory init

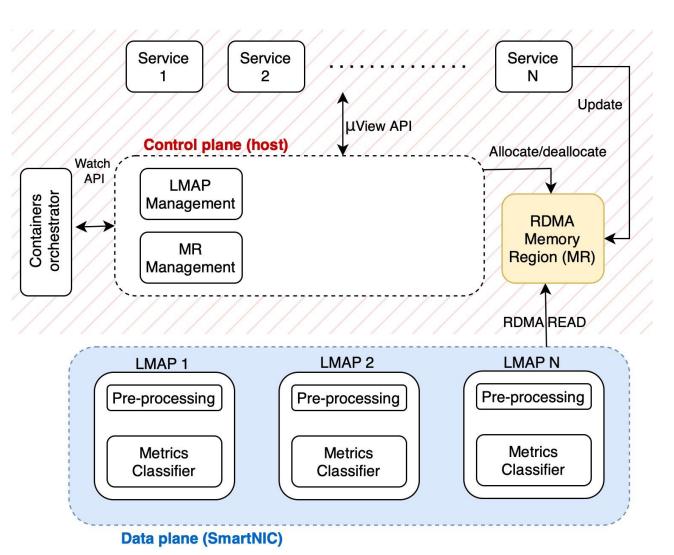


Description	API Call	
Manage	LMAPID newLMAP(Config, ServiceID)	
LMAP	void configLMAP (LMAPID, Dict <serviceid, list<metricconfig="">)</serviceid,>	
	void deleteLMAP (LMAPID)	
Configure	MetricID addMetric(LMAPID, Metric, Type, AggType, Frequency)	
Metrics	void deleteMetric(LMAPID, MetricID)	
Add Hooks	HookID registerHook (List <lmapid>, <u>HookFn</u>)</lmapid>	
Interface	Declaration	
<u>HookFn</u>	void _(Feature, Output, AScore)	

System architecture

- µView API (one-time cost)
 - service registration
 - configure LMAP metrics collection and management
- DMA memory init
- one-sided RDMA READs
 - to fetch metrics on data-plane
 - no memory copies overhead!

Description	API Call
Manage	LMAPID newLMAP(Config, ServiceID)
LMAP	void configLMAP(LMAPID, Dict <serviceid, list<metricconfig="">)</serviceid,>
	void deleteLMAP(LMAPID)
Configure	MetricID addMetric(LMAPID, Metric, Type, AggType, Frequency)
Metrics	void deleteMetric(LMAPID, MetricID)
Add Hooks	HookID registerHook (List <lmapid>, <u>HookFn</u>)</lmapid>
Interface	Declaration
HookFn	void _(Feature, Output, AScore)



25

Design challenges

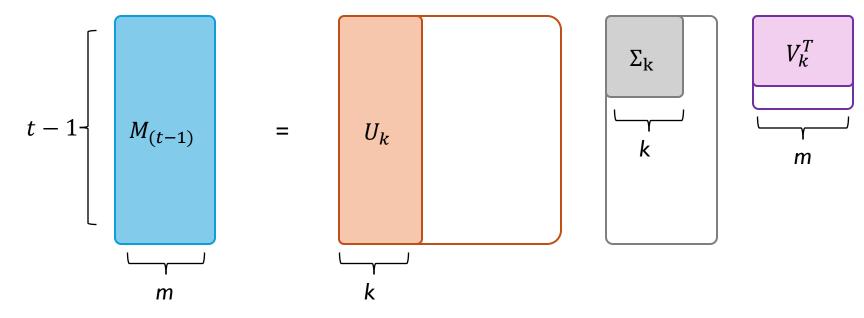
- take data outside the host boundaries, without introducing overhead

Practicality of anomaly detection

- lightweight to co-exist with other offloads to IPUs
- determine critical metrics for each service
- adjust to workload shift with minimal reconfiguration effort

Anomaly detection

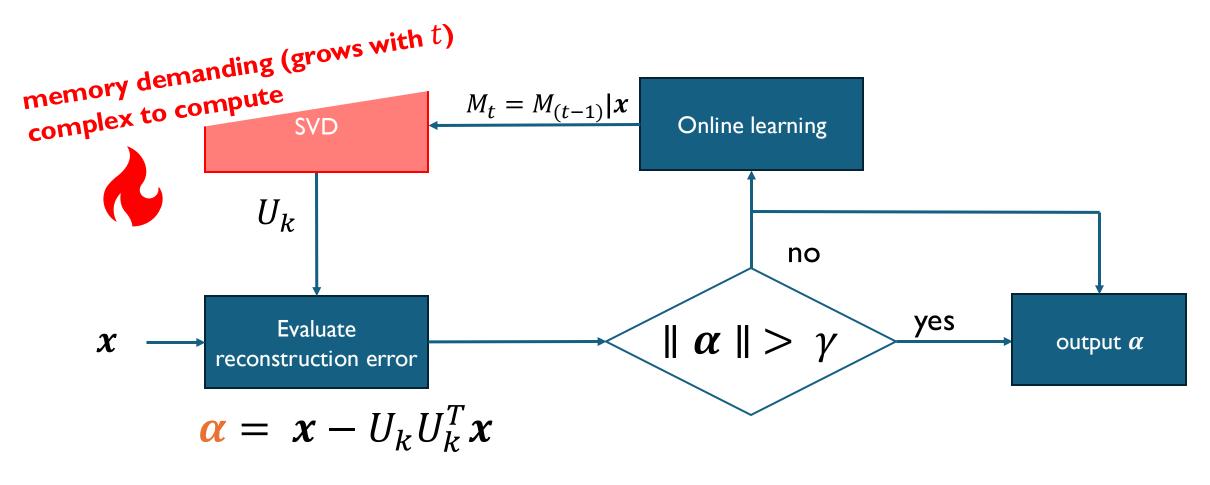
- we borrow from subspace analysis
- assume:
 - at time (t-1) we know a non-anomalous metric dataset $M_{(t-1)}$
 - we can compute its rank-k $SVD_k(M_{(t-1)}) = U_k \Sigma_k V_k^T$



• U_k is a good reconstruction basis for datapoints in $M_{(t-1)}$

Anomaly detection

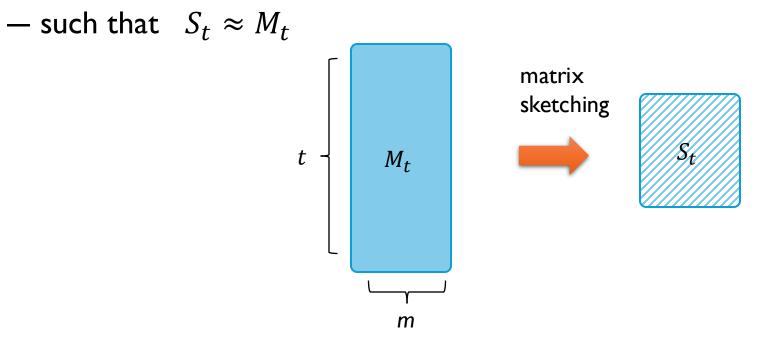
• at time t, we receive a new vector of metrics x



anomaly score vector for each metric

Frequent Direction sketch (practicality!) Liberty, KDD'13

• matrix sketching: replace M_t with a smaller matrix S_t



- run SVD on S_t
- streaming operations
 - we can compute S_t using only S_{t-1} and new datapoint x
 - never need of storing M_t during runtime

Design challenges

Host to SmartNIC data movement

- take data outside the host boundaries, without introducing overhead

Practicality of anomaly detection

- lightweight to co-exist with other offloads to IPUs
- determine critical metrics for each service
- adjust to workload shift with minimal reconfiguration effort

Evaluation setup

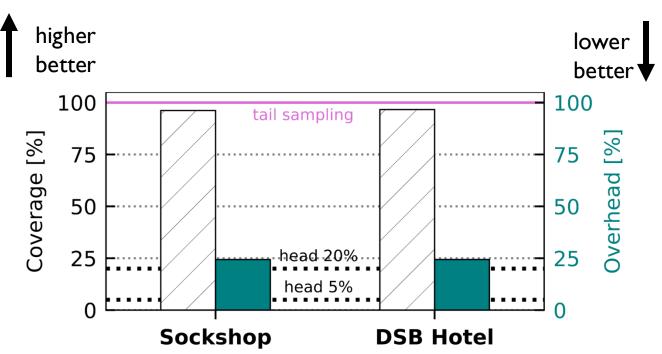
- 4 nodes Kubernetes cluster with Istio service mesh
 - NVIDIA BlueField-2 IPU
- application workloads
 - DeathStarBench (DBS) HotelReservation and Google's SockShop benchmarks
 - synthetic load generation of user requests
- metrics collection
 - container system resource usage (CPU, memory, I/O, network, ..) via cAdvisor
 - service-level e.g., Envoy proxies, Redis key-value stores
 - 1 second local streaming interval host \rightarrow IPU
- anomaly injection via chaos-engineering

Anomaly type	Injection tools
Memory pressure	ChaosMesh [2], stress-ng [30], pmbw [88]
LLC pressure	FIRM's llc.c [76]
I/O pressure	ChaosMesh [2], stress-ng [30]
CPU usage	ChaosMesh [2], stress-ng [30]
L7 failure	redis-cli [78], ChaosMesh [2]

Table 4: Anomaly injection setup.

µView high fault coverage & low overhead

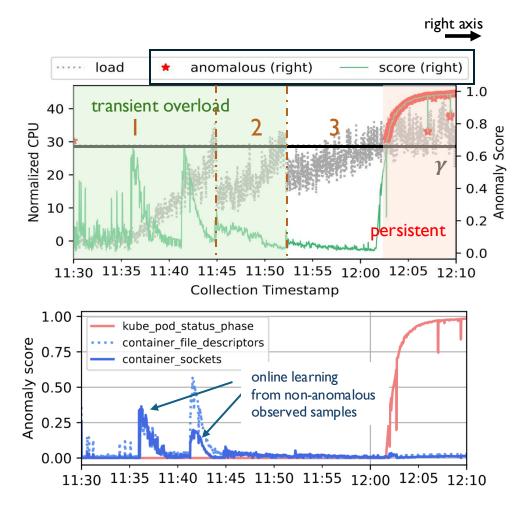
- Trace violate SLOs when:
 - latency above threshold or HTTP/gRPC errors
 - threshold : tail latency percentile computed on healthy requests
- Baselines
 - tail sampling: always keeps relevant traces, but the collector needs to ingest all traces
 - random **head sampling**: industry de-facto approach



µView adaptation to dynamic workloads

- frontend service + kubernetes HPA autoscaler
 - rescaling rule: service CPU usage above 30%
 - maximum capacity 3 replicas

- goal: distinguish two overload conditions
 - transient, before rescale [non-anomalous]
 - persistent, saturated maximum capacity [anomalous]



Summary

- Observability overheads at cloud-scale
 - remedy in production: coarse-grained sampling $\ensuremath{\mathfrak{S}}$
- ingestion cost dominates overheads, not generation !
 - local processing at fine temporal granularity \odot
- µView: zooming into microservice state in real-time
 - informative data, at low overhead (leverage IPUs to offload analysis)
 - practicality
 - lightweight streaming anomaly detection ightarrow fits IPUs resource constraints
 - one-catch-all anomaly threshold
 - adaptive to the dynamicity of cloud-native environments
- near-optimal fault coverage for distributed tracing
 - more use-cases in our paper (soon 🏷)