
State-Compute Replication: 
Parallelizing High-Speed Stateful 

Packet Processing
Academic Salon on High-Performance Ethernet: Host 

Networking and Monitoring
12 - 13 March 2025



• Throughput is a first-class citizen in modern networked systems
• Software LBs, CDN nodes, DDoS mitigators depends on it

Software Packet Processing in post Moore's Law Era

2



• Throughput is a first-class citizen in modern networked systems
• Software LBs, CDN nodes, DDoS mitigators depends on it

Software Packet Processing in post Moore's Law Era

Increasing NICs speed

2



• Throughput is a first-class citizen in modern networked systems
• Software LBs, CDN nodes, DDoS mitigators depends on it

Software Packet Processing in post Moore's Law Era

Increasing NICs speed Slowdown of Moore’s Law

2



• Throughput is a first-class citizen in modern networked systems
• Software LBs, CDN nodes, DDoS mitigators depends on it

Software Packet Processing in post Moore's Law Era

Increasing NICs speed Slowdown of Moore’s Law

3

*a CPU core that is struggling to cope with 
the increasing speed of networking



• There have been significant efforts to speed up packet processing through
• Better stack design

How to speed up packet processing?

4



• There have been significant efforts to speed up packet processing through
• Better stack design
• Removing user-kernel crossings

How to speed up software packet processing?

5



• There have been significant efforts to speed up packet processing through
• Better stack design
• Removing user-kernel crossings
• Running software at lower layers of the stack

How to speed up software packet processing?

6



• There have been significant efforts to speed up packet processing through
• Better stack design
• Removing user-kernel crossings
• Running software at lower layers of the stack
• Design better host interconnects

How to speed up software packet processing?

7



This talk: Scaling Packet Processing using multiple cores

• We present a principle that enables scaling a single, stateful packet 
processing programs across multiple cores

8



What are the existing approaches? #1: Shared state

9



What are the existing approaches? #1: Shared state

• Stateless applications are easy to scale, however…

9



What are the existing approaches? #1: Shared state

• Stateless applications are easy to scale, however…
• …many packet processing applications are stateful

• Maintain and update the regions of memory across many packets

9



What are the existing approaches? #1: Shared state

• Stateless applications are easy to scale, however…
• …many packet processing applications are stateful

• Maintain and update the regions of memory across many packets
• Shared data structure + explicit synchronization

Packet #1

Packet #2

Packet #3

Network 
Function

Network 
Function

Network 
Function

Shared Data 
Structure

Every packet 
can go 

everywhere

9



What are the existing approaches? #1: Shared state

• Stateless applications are easy to scale, however…
• …many packet processing applications are stateful

• Maintain and update the regions of memory across many packets
• Shared data structure + explicit synchronization

Packet #1

Packet #2

Packet #3

Network 
Function

Network 
Function

Network 
Function

Shared Data 
Structure

Every packet 
can go 

everywhere

9

Port knocking firewall



What are the existing approaches? #1: Shared state

Packet #1

Packet #2

Packet #3

Network 
Function

Network 
Function

Network 
Function

Shared Data 
Structure

Every packet 
can go 

everywhere

10

Port knocking firewall



What are the existing approaches? #1: Shared state

Packet #1

Packet #2

Packet #3

Network 
Function

Network 
Function

Network 
Function

Shared Data 
Structure

Every packet 
can go 

everywhere

10

Flows in realistic network traffic follow heavy-tailed distributions
• Significant memory contention if packet are spread across cores

Port knocking firewall



What are the existing approaches? #1: Shared state

Packet #1

Packet #2

Packet #3

Network 
Function

Network 
Function

Network 
Function

Shared Data 
Structure

Every packet 
can go 

everywhere

10

Flows in realistic network traffic follow heavy-tailed distributions
• Significant memory contention if packet are spread across cores

In many programs, state update operations are too complex to be 
implemented in transactional hardware (i.e., fetch-add-write)

Port knocking firewall



What are the existing approaches? #2: Sharding

11



What are the existing approaches? #2: Sharding

• Process packets that update the same memory at the same core, sharding 
the overall state of the program across cores

• NIC RSS to direct packets from the same flow to the same core + shared-nothing 
data structures

• The most used technique today

11



What are the existing approaches? #2: Sharding

• Process packets that update the same memory at the same core, sharding 
the overall state of the program across cores

• NIC RSS to direct packets from the same flow to the same core + shared-nothing 
data structures

• The most used technique today

Flow #1

Flow #2

Flow #3

Network 
Function

Network 
Function

Network 
Function

Per-CPU Data 
Structures

RSS

11



What are the existing approaches? #2: Sharding

Flow #1

Flow #2

Flow #3

Network 
Function

Network 
Function

Network 
Function

Per-CPU Data 
Structures

RSS

12



What are the existing approaches? #2: Sharding

Not always possible to avoid coordination through sharding
• There may be parts of the program state shared across packets (e.g., list of free ports in a 

NAT)

Flow #1

Flow #2

Flow #3

Network 
Function

Network 
Function

Network 
Function

Per-CPU Data 
Structures

RSS

12



What are the existing approaches? #2: Sharding

Not always possible to avoid coordination through sharding
• There may be parts of the program state shared across packets (e.g., list of free ports in a 

NAT)
Today’s NIC RSS use a limited number of packet’s header fields to steer packets

Flow #1

Flow #2

Flow #3

Network 
Function

Network 
Function

Network 
Function

Per-CPU Data 
Structures

RSS

12



What are the existing approaches? #2: Sharding

Not always possible to avoid coordination through sharding
• There may be parts of the program state shared across packets (e.g., list of free ports in a 

NAT)
Today’s NIC RSS use a limited number of packet’s header fields to steer packets
Creates load imbalance across cores if some flows are heavier than others

Flow #1

Flow #2

Flow #3

Network 
Function

Network 
Function

Network 
Function

Per-CPU Data 
Structures

RSS

12



What are the existing approaches? #2: Sharding

Not always possible to avoid coordination through sharding
• There may be parts of the program state shared across packets (e.g., list of free ports in a 

NAT)
Today’s NIC RSS use a limited number of packet’s header fields to steer packets
Creates load imbalance across cores if some flows are heavier than others

Flow #1

Flow #2

Flow #3

Network 
Function

Network 
Function

Network 
Function

Per-CPU Data 
Structures

RSS

12

Port knocking firewall



State Compute Replication (SRC): 
Scaling Single, Stateful Flows across multiple cores

13

Port knocking firewall



State Compute Replication (SRC): 
Scaling Single, Stateful Flows across multiple cores

13

Throughput scales linearly, 
deterministically and 

independently from flow 
size distribution

Port knocking firewall



How does this work? – Running Example

Packet #1

Packet #2

Packet #3

Port 
knocking

Port 
knocking

Port 
knocking

• Port knocking firewall
• If a source transmits IPv4/TCP packets with the correct sequence of TCP 

destination ports, all further communication is permitted

Closed_1

Closed_2

Open

Closed_3

Closed_1

Closed_2

Open

Closed_3

Closed_1

Closed_2

Open

Closed_3

14



How does this work? – Running Example

Packet #1

Packet #2

Packet #3

Port 
knocking

Port 
knocking

Port 
knocking

• Port knocking firewall
• If a source transmits IPv4/TCP packets with the correct sequence of TCP 

destination ports, all further communication is permitted

Closed_1

Closed_2

Open

Closed_3

Closed_1

Closed_2

Open

Closed_3

Closed_1

Closed_2

Open

Closed_3

14

Idea #1: Replication for correctness

Send every packet reliably to every core, 
and replicate the state and computation on 

every core



State Compute Replication (SRC): 
Scaling Single, Stateful Flows across multiple cores

15



State Compute Replication (SRC): 
Scaling Single, Stateful Flows across multiple cores

15

• Packets can be perfectly sprayed across all the cores (or a set of cores)



State Compute Replication (SRC): 
Scaling Single, Stateful Flows across multiple cores

15

• Packets can be perfectly sprayed across all the cores (or a set of cores)

Packet #1

Packet #2

Packet #3

Port 
knocking

Port 
knocking

Port 
knocking



State Compute Replication (SRC): 
Scaling Single, Stateful Flows across multiple cores

15

• Packets can be perfectly sprayed across all the cores (or a set of cores)
• Every core will have its own state without sharing between the cores

Packet #1

Packet #2

Packet #3

Port 
knocking

Port 
knocking

Port 
knocking



State Compute Replication (SRC): 
Scaling Single, Stateful Flows across multiple cores

15

• Packets can be perfectly sprayed across all the cores (or a set of cores)
• Every core will have its own state without sharing between the cores

Packet #1

Packet #2

Packet #3

Port 
knocking

Port 
knocking

Port 
knocking

Per-CPU Data 
Structures



State Compute Replication (SRC): 
Scaling Single, Stateful Flows across multiple cores

15

• Packets can be perfectly sprayed across all the cores (or a set of cores)
• Every core will have its own state without sharing between the cores
• Given a set of N cores, every packet p will go to core c = p % (N – 1)

Packet #1

Packet #2

Packet #3

Port 
knocking

Port 
knocking

Port 
knocking

Per-CPU Data 
Structures



How does this work? – Running Example

Packet #1

Packet #2

Packet #3

Port 
knocking

Port 
knocking

Port 
knocking

• Port knocking firewall
• If a source transmits IPv4/TCP packets with the correct sequence of TCP 

destination ports, all further communication is permitted

Closed_1

Closed_2

Open

Closed_3

Closed_1

Closed_2

Open

Closed_3

Closed_1

Closed_2

Open

Closed_3

16



How does this work? – Running Example

Packet #1

Packet #2

Packet #3

Port 
knocking

Port 
knocking

Port 
knocking

• Port knocking firewall
• If a source transmits IPv4/TCP packets with the correct sequence of TCP 

destination ports, all further communication is permitted

Closed_1

Closed_2

Open

Closed_3

Closed_1

Closed_2

Open

Closed_3

Closed_1

Closed_2

Open

Closed_3

16



How does this work? – Running Example

Packet #1

Packet #2

Packet #3

Port 
knocking

Port 
knocking

Port 
knocking

• Port knocking firewall
• If a source transmits IPv4/TCP packets with the correct sequence of TCP 

destination ports, all further communication is permitted

Closed_1

Closed_2

Open

Closed_3

Closed_1

Closed_2

Open

Closed_3

Closed_1

Closed_2

Open

Closed_3

16



How does this work? – Running Example

Packet #1

Packet #2

Packet #3

Port 
knocking

Port 
knocking

Port 
knocking

• Port knocking firewall
• If a source transmits IPv4/TCP packets with the correct sequence of TCP 

destination ports, all further communication is permitted

Closed_1

Closed_2

Open

Closed_3

Closed_1

Closed_2

Open

Closed_3

Closed_1

Closed_2

Open

Closed_3

17



How does this work? – Running Example

Packet #1

Packet #2

Packet #3

Port 
knocking

Port 
knocking

Port 
knocking

• Port knocking firewall
• If a source transmits IPv4/TCP packets with the correct sequence of TCP 

destination ports, all further communication is permitted

Closed_1

Closed_2

Open

Closed_3

Closed_1

Closed_2

Open

Closed_3

Closed_1

Closed_2

Open

Closed_3

17

Idea #2: State Compute Replication

Piggyback a bounded recent packet history 
on each packet sent to a core

to use replication (#1)



How does this work? – Running Example

Packet #1

Packet #2

Packet #3

Port 
knocking

Port 
knocking

Port 
knocking

Closed_1

Closed_2

Open

Closed_3

Closed_1

Closed_2

Open

Closed_3

Closed_1

Closed_2

Open

Closed_3

pkt #2

18



How does this work? – Running Example

Packet #1

Packet #2

Packet #3

Port 
knocking

Port 
knocking

Port 
knocking

Closed_1

Closed_2

Open

Closed_3

Closed_1

Closed_2

Open

Closed_3

Closed_1

Closed_2

Open

Closed_3

pkt #2

18

+ md pkt #1



How does this work? – Running Example

Packet #1

Packet #2

Packet #3

Port 
knocking

Port 
knocking

Port 
knocking

• Metadata
• Information of previous packets needed to 

update the state machine
• In this example: l3proto, l4proto, srcIP, dstPort

Closed_1

Closed_2

Open

Closed_3

Closed_1

Closed_2

Open

Closed_3

Closed_1

Closed_2

Open

Closed_3

pkt #2

18

+ md pkt #1



How does this work? – Running Example

Packet #1

Packet #2

Packet #3

Port 
knocking

Port 
knocking

Port 
knocking

• Metadata
• Information of previous packets needed to 

update the state machine
• In this example: l3proto, l4proto, srcIP, dstPort

Closed_1

Closed_2

Open

Closed_3

Closed_1

Closed_2

Open

Closed_3

Closed_1

Closed_2

Open

Closed_3

pkt #2

18

+ md pkt #1



How does this work? – Running Example

Packet #1

Packet #2

Packet #3

Port 
knocking

Port 
knocking

Port 
knocking

• Metadata
• Information of previous packets needed to 

update the state machine
• In this example: l3proto, l4proto, srcIP, dstPort

Closed_1

Closed_2

Open

Closed_3

Closed_1

Closed_2

Open

Closed_3

Closed_1

Closed_2

Open

Closed_3

pkt #2

18

+ md pkt #1



How does this work? – Running Example

Packet #1

Packet #2

Packet #3

Port 
knocking

Port 
knocking

Port 
knocking

• Metadata
• Information of previous packets needed to 

update the state machine
• In this example: l3proto, l4proto, srcIP, dstPort

Closed_1

Closed_2

Open

Closed_3

Closed_1

Closed_2

Open

Closed_3

Closed_1

Closed_2

Open

Closed_3

pkt #2

18

+ md pkt #1



How does this work? – Running Example

Packet #1

Packet #2

Packet #3

Port 
knocking

Port 
knocking

Port 
knocking

Closed_1

Closed_2

Open

Closed_3

Closed_1

Closed_2

Open

Closed_3

Closed_1

Closed_2

Open

Closed_3

pkt #3

• Metadata
• Information of previous packets needed to 

update the state machine
• In this example: l3proto, l4proto, srcIP, dstPort

19



How does this work? – Running Example

Packet #1

Packet #2

Packet #3

Port 
knocking

Port 
knocking

Port 
knocking

Closed_1

Closed_2

Open

Closed_3

Closed_1

Closed_2

Open

Closed_3

Closed_1

Closed_2

Open

Closed_3

pkt #3

• Metadata
• Information of previous packets needed to 

update the state machine
• In this example: l3proto, l4proto, srcIP, dstPort

19

+ md pkt #1 
+ md pkt #2



How does this work? – Running Example

Packet #1

Packet #2

Packet #3

Port 
knocking

Port 
knocking

Port 
knocking

Closed_1

Closed_2

Open

Closed_3

Closed_1

Closed_2

Open

Closed_3

Closed_1

Closed_2

Open

Closed_3

pkt #3

• Metadata
• Information of previous packets needed to 

update the state machine
• In this example: l3proto, l4proto, srcIP, dstPort

19

+ md pkt #1 
+ md pkt #2



How does this work? – Running Example

Packet #1

Packet #2

Packet #3

Port 
knocking

Port 
knocking

Port 
knocking

Closed_1

Closed_2

Open

Closed_3

Closed_1

Closed_2

Open

Closed_3

Closed_1

Closed_2

Open

Closed_3

pkt #3

• Metadata
• Information of previous packets needed to 

update the state machine
• In this example: l3proto, l4proto, srcIP, dstPort

19

+ md pkt #1 
+ md pkt #2



How does this work? – Running Example

Packet #1

Packet #2

Packet #3

Port 
knocking

Port 
knocking

Port 
knocking

Closed_1

Closed_2

Open

Closed_3

Closed_1

Closed_2

Open

Closed_3

Closed_1

Closed_2

Open

Closed_3

pkt #3

• Metadata
• Information of previous packets needed to 

update the state machine
• In this example: l3proto, l4proto, srcIP, dstPort

19

+ md pkt #1 
+ md pkt #2



How does this work? – Running Example

Packet #1

Packet #2

Packet #3

Port 
knocking

Port 
knocking

Port 
knocking

Closed_1

Closed_2

Open

Closed_3

Closed_1

Closed_2

Open

Closed_3

Closed_1

Closed_2

Open

Closed_3

pkt #3

• Metadata
• Information of previous packets needed to 

update the state machine
• In this example: l3proto, l4proto, srcIP, dstPort

19

+ md pkt #1 
+ md pkt #2



How does this work? – Running Example

Packet #1

Packet #2

Packet #3

Port 
knocking

Port 
knocking

Port 
knocking

Closed_1

Closed_2

Open

Closed_3

Closed_1

Closed_2

Open

Closed_3

Closed_1

Closed_2

Open

Closed_3

pkt #4

20



How does this work? – Running Example

Packet #1

Packet #2

Packet #3

Port 
knocking

Port 
knocking

Port 
knocking

Closed_1

Closed_2

Open

Closed_3

Closed_1

Closed_2

Open

Closed_3

Closed_1

Closed_2

Open

Closed_3

pkt #4

20

+ md pkt #2 
+ md pkt #3



How does this work? – Running Example

Packet #1

Packet #2

Packet #3

Port 
knocking

Port 
knocking

Port 
knocking

Closed_1

Closed_2

Open

Closed_3

Closed_1

Closed_2

Open

Closed_3

Closed_1

Closed_2

Open

Closed_3

pkt #4

20

+ md pkt #2 
+ md pkt #3



How does this work? – Running Example

Packet #1

Packet #2

Packet #3

Port 
knocking

Port 
knocking

Port 
knocking

Closed_1

Closed_2

Open

Closed_3

Closed_1

Closed_2

Open

Closed_3

Closed_1

Closed_2

Open

Closed_3

pkt #4

20

+ md pkt #2 
+ md pkt #3



How does this work? – Running Example

Packet #1

Packet #2

Packet #3

Port 
knocking

Port 
knocking

Port 
knocking

Closed_1

Closed_2

Open

Closed_3

Closed_1

Closed_2

Open

Closed_3

Closed_1

Closed_2

Open

Closed_3

pkt #4

20

+ md pkt #2 
+ md pkt #3



How does this work? – Running Example

Packet #1

Packet #2

Packet #3

Port 
knocking

Port 
knocking

Port 
knocking

Closed_1

Closed_2

Open

Closed_3

Closed_1

Closed_2

Open

Closed_3

Closed_1

Closed_2

Open

Closed_3

pkt #4

• In general, every packet has:
• Current pkt + ∑𝒎𝒎𝒎𝒎(𝑵𝑵− 𝟏𝟏)
• Where N is the number of cores

20

+ md pkt #2 
+ md pkt #3



Operationalizing SCR: The Packet History Sequencer

21



Operationalizing SCR: The Packet History Sequencer

Sequencer

f(pi), f(pi+1), f(pi+2)

f(pi-2), f(pi-1), pi

f(pi-1), f(pi), pi+1

f(pi), f(pi+1), pi+2

Core 1 Si-3
Pa

ck
et

s

Core 2 Si-2

Core 3 Si-1

21



Operationalizing SCR: The Packet History Sequencer

1. Steer packets across cores in round-robin fashion

Sequencer

f(pi), f(pi+1), f(pi+2)

f(pi-2), f(pi-1), pi

f(pi-1), f(pi), pi+1

f(pi), f(pi+1), pi+2

Core 1 Si-3
Pa

ck
et

s

Core 2 Si-2

Core 3 Si-1

21



Operationalizing SCR: The Packet History Sequencer

1. Steer packets across cores in round-robin fashion
2. Maintain the most recent packet history across all packets

Sequencer

f(pi), f(pi+1), f(pi+2)

f(pi-2), f(pi-1), pi

f(pi-1), f(pi), pi+1

f(pi), f(pi+1), pi+2

Core 1 Si-3
Pa

ck
et

s

Core 2 Si-2

Core 3 Si-1

21



Operationalizing SCR: The Packet History Sequencer

1. Steer packets across cores in round-robin fashion
2. Maintain the most recent packet history across all packets
3. Piggyback the packet history on each packet steered to the cores

Sequencer

f(pi), f(pi+1), f(pi+2)

f(pi-2), f(pi-1), pi

f(pi-1), f(pi), pi+1

f(pi), f(pi+1), pi+2

Core 1 Si-3
Pa

ck
et

s

Core 2 Si-2

Core 3 Si-1

21



Operationalizing SCR: The Packet History Sequencer

1. Steer packets across cores in round-robin fashion
2. Maintain the most recent packet history across all packets
3. Piggyback the packet history on each packet steered to the cores

Sequencer

f(pi), f(pi+1), f(pi+2)

f(pi-2), f(pi-1), pi

f(pi-1), f(pi), pi+1

f(pi), f(pi+1), pi+2

Core 1 Si-3
Pa

ck
et

s

Core 2 Si-2

Core 3 Si-1

Programmable 
TOR switch

21



Operationalizing SCR: The Packet History Sequencer

1. Steer packets across cores in round-robin fashion
2. Maintain the most recent packet history across all packets
3. Piggyback the packet history on each packet steered to the cores

Sequencer

f(pi), f(pi+1), f(pi+2)

f(pi-2), f(pi-1), pi

f(pi-1), f(pi), pi+1

f(pi), f(pi+1), pi+2

Core 1 Si-3
Pa

ck
et

s

Core 2 Si-2

Core 3 Si-1

Programmable 
TOR switch

SmartNICs with 
programmable 

pipelines

21



Operationalizing SCR: SCR-Aware Programming

22



Operationalizing SCR: SCR-Aware Programming

22

• Define per-core state data structures and 
per-packet metadata structures.



Operationalizing SCR: SCR-Aware Programming

22

• Define per-core state data structures and 
per-packet metadata structures.

• Fast-forward the state machine using the 
packet history.



Experimental Results - Throughput

• We tested SCR on a set of eBPF/XDP applications, using realistic traffic 
traces (CAIDA, University DC)

DDoS Mitigator Port-knocking firewall Token bucket policer

23



Experimental Results - Throughput

• We tested SCR on a set of eBPF/XDP applications, using realistic traffic 
traces (CAIDA, University DC)

DDoS Mitigator Port-knocking firewall Token bucket policer
SCR is the only scaling technique that can 

scale the throughput of all the stateful 
packet-processing programs we evaluated 

across multiple cores, regardless of the flow 
size distribution.

24



Why does SCR scales better than the other techniques?

L2 hit ratio: 8 cores IPC: 8 cores Latency: 8 cores

25



Why does SCR scales better than the other techniques?

L2 hit ratio: 8 cores IPC: 8 cores Latency: 8 cores

Lock and cache line 
contention across 

cores 25



Why does SCR scales better than the other techniques?

L2 hit ratio: 8 cores IPC: 8 cores Latency: 8 cores

Lock and cache line 
contention across 

cores

High variation, 
indicating imbalance 

of CPU work 25



Why does SCR scales better than the other techniques?

L2 hit ratio: 8 cores IPC: 8 cores Latency: 8 cores

Lock and cache line 
contention across 

cores

High variation, 
indicating imbalance 

of CPU work

Consistent high IPC with more cores, 
because of metadata history processing

25



All that glitters is not gold - SCR limitations

26

1. If the compute latency increases in comparison to the dispatch latency, 
the effectiveness of SCR’s multi-core scaling reduces
• Every core has to do “more work” to catch up with the state



All that glisters is not gold! SCR limitations

27

token bucket policer



All that glisters is not gold! SCR limitations

27

2. SCR’s attachment of histories to packets incurs non-negligible overheads

token bucket policer



All that glisters is not gold! SCR limitations

27

2. SCR’s attachment of histories to packets incurs non-negligible overheads

token bucket policer



All that glisters is not gold! SCR limitations

27

2. SCR’s attachment of histories to packets incurs non-negligible overheads

• Can increase L3 cache pressure due to 
higher DDIO cache occupancy

token bucket policer



All that glisters is not gold! SCR limitations

27

2. SCR’s attachment of histories to packets incurs non-negligible overheads

• Can increase L3 cache pressure due to 
higher DDIO cache occupancy

• Increases PCIe transactions and 
bandwidth

token bucket policer



All that glisters is not gold! SCR limitations

27

2. SCR’s attachment of histories to packets incurs non-negligible overheads

• Can increase L3 cache pressure due to 
higher DDIO cache occupancy

• Increases PCIe transactions and 
bandwidth

• When packet history is appended outside 
the NIC (e.g., TOR switch), SCR may 
saturate the NIC earlier than other 
approaches

token bucket policer



All that glisters is not gold! SCR limitations

27

2. SCR’s attachment of histories to packets incurs non-negligible overheads

• Can increase L3 cache pressure due to 
higher DDIO cache occupancy

• Increases PCIe transactions and 
bandwidth

• When packet history is appended outside 
the NIC (e.g., TOR switch), SCR may 
saturate the NIC earlier than other 
approaches

After 11 cores, the 
CPU is no longer the 
bottleneck for SCR

token bucket policer



Handling Packet Loss

28

Sequencer

f(pi), f(pi+1), f(pi+2)

f(pi-2), f(pi-1), pi

f(pi-1), f(pi), pi+1

f(pi), f(pi+1), pi+2

Core 1 Si-3

Pa
ck

et
s

Core 2 Si-2

Core 3 Si-1

Programmable 
TOR switch

SmartNICs with 
programmable 

pipelines



Handling Packet Loss

• Packets can be lost either 

28

Sequencer

f(pi), f(pi+1), f(pi+2)

f(pi-2), f(pi-1), pi

f(pi-1), f(pi), pi+1

f(pi), f(pi+1), pi+2

Core 1 Si-3

Pa
ck

et
s

Core 2 Si-2

Core 3 Si-1

Programmable 
TOR switch

SmartNICs with 
programmable 

pipelines



Handling Packet Loss

• Packets can be lost either 
• (1) prior to the sequencer

28

Sequencer

f(pi), f(pi+1), f(pi+2)

f(pi-2), f(pi-1), pi

f(pi-1), f(pi), pi+1

f(pi), f(pi+1), pi+2

Core 1 Si-3

Pa
ck

et
s

Core 2 Si-2

Core 3 Si-1

Programmable 
TOR switch

SmartNICs with 
programmable 

pipelines



Handling Packet Loss

• Packets can be lost either 
• (1) prior to the sequencer
• (2) after the sequencer but prior to processing at a CPU core

28

Sequencer

f(pi), f(pi+1), f(pi+2)

f(pi-2), f(pi-1), pi

f(pi-1), f(pi), pi+1

f(pi), f(pi+1), pi+2

Core 1 Si-3

Pa
ck

et
s

Core 2 Si-2

Core 3 Si-1

Programmable 
TOR switch

SmartNICs with 
programmable 

pipelines



Handling Packet Loss

• Packets can be lost either 
• (1) prior to the sequencer
• (2) after the sequencer but prior to processing at a CPU core
• (3) after processing at a core.

28

Sequencer

f(pi), f(pi+1), f(pi+2)

f(pi-2), f(pi-1), pi

f(pi-1), f(pi), pi+1

f(pi), f(pi+1), pi+2

Core 1 Si-3

Pa
ck

et
s

Core 2 Si-2

Core 3 Si-1

Programmable 
TOR switch

SmartNICs with 
programmable 

pipelines



Handling Packet Loss

2989

Sequencer

f(pi), f(pi+1), f(pi+2)

f(pi-2), f(pi-1), pi

f(pi-1), f(pi), pi+1

f(pi), f(pi+1), pi+2

Core 1 Si-3
Pa

ck
et

s

Core 2 Si-2

Core 3 Si-1

Programmable 
TOR switch



Handling Packet Loss

• The only one that represents a problem is (2)

2990

Sequencer

f(pi), f(pi+1), f(pi+2)

f(pi-2), f(pi-1), pi

f(pi-1), f(pi), pi+1

f(pi), f(pi+1), pi+2

Core 1 Si-3
Pa

ck
et

s

Core 2 Si-2

Core 3 Si-1

Programmable 
TOR switch



Handling Packet Loss

• The only one that represents a problem is (2)
• Only in the case where the sequence is deployed on a top-of-the-rack 

switch
• We can run link-level flow control mechanism like PFC to prevent packet loss 

between the switch and server cores.

2991

Sequencer

f(pi), f(pi+1), f(pi+2)

f(pi-2), f(pi-1), pi

f(pi-1), f(pi), pi+1

f(pi), f(pi+1), pi+2

Core 1 Si-3
Pa

ck
et

s

Core 2 Si-2

Core 3 Si-1

Programmable 
TOR switch



Handling Packet Loss - Solution

30



Handling Packet Loss - Solution

• A core can either read the full flow state from a more up-to-date core

30



Handling Packet Loss - Solution

• A core can either read the full flow state from a more up-to-date core
• …or it can read the packet history from either the sequencer or a log 

written by a more up-to-date core

30



Handling Packet Loss - Solution

• A core can either read the full flow state from a more up-to-date core
• …or it can read the packet history from either the sequencer or a log 

written by a more up-to-date core

• To achieve this, we:
1. Have the sequence attach an incrementing sequence number to each packet
2. Use a per-core, lockless, single-writer multiple-reader log
3. Introduce an algorithm to catch up the flow state on each core upon detection 

of loss

30



Conclusions

31



Conclusions

• State Compute Replication (SCR) is a principle that enables scaling 
stateful packet processing programs across multiple cores

31



Conclusions

• State Compute Replication (SCR) is a principle that enables scaling 
stateful packet processing programs across multiple cores

• It leverages a packet history sequencer to collect the history of the 
packets and propagate it to CPU cores

• Can run on a NIC or TOR switch

31



Conclusions

• State Compute Replication (SCR) is a principle that enables scaling 
stateful packet processing programs across multiple cores

• It leverages a packet history sequencer to collect the history of the 
packets and propagate it to CPU cores

• Can run on a NIC or TOR switch

• Applications using SCR need to be modified to replicate the program state 
and keep private copies per core

• A compiler can do it automatically!

31



Conclusions

• State Compute Replication (SCR) is a principle that enables scaling 
stateful packet processing programs across multiple cores

• It leverages a packet history sequencer to collect the history of the 
packets and propagate it to CPU cores

• Can run on a NIC or TOR switch

• Applications using SCR need to be modified to replicate the program state 
and keep private copies per core

• A compiler can do it automatically!

• Our experiment show that SCR can scale total packet processing 
throughput linearly with cores, deterministically and independent of 
flow size distribution

31


	State-Compute Replication: Parallelizing High-Speed Stateful Packet Processing
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	State Compute Replication (SRC): �Scaling Single, Stateful Flows across multiple cores
	State Compute Replication (SRC): �Scaling Single, Stateful Flows across multiple cores
	Slide Number 29
	Slide Number 30
	State Compute Replication (SRC): �Scaling Single, Stateful Flows across multiple cores
	State Compute Replication (SRC): �Scaling Single, Stateful Flows across multiple cores
	State Compute Replication (SRC): �Scaling Single, Stateful Flows across multiple cores
	State Compute Replication (SRC): �Scaling Single, Stateful Flows across multiple cores
	State Compute Replication (SRC): �Scaling Single, Stateful Flows across multiple cores
	State Compute Replication (SRC): �Scaling Single, Stateful Flows across multiple cores
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Slide Number 83
	Slide Number 84
	Slide Number 85
	Slide Number 86
	Slide Number 87
	Slide Number 88
	Slide Number 89
	Slide Number 90
	Slide Number 91
	Slide Number 92
	Slide Number 93
	Slide Number 94
	Slide Number 95
	Slide Number 96
	Slide Number 97
	Slide Number 98
	Slide Number 99
	Slide Number 100

