State-Compute Replication:

Parallelizing High-Speed Stateful
Packet Processing

Academic Salon on High-Performance Ethernet: Host

Networking and Monitoring
12 - 13 March 2025

(?’ NEW YORK UNIVERSITY

TTTTTTTTTTTTTTTTTT

MILANO 1863

Software Packet Processing in post Moore's Law Era

* Throughput is a first-class citizen in modern networked systems
* Software LBs, CDN nodes, DDoS mitigators depends on it

Software Packet Processing in post Moore's Law Era

* Throughput is a first-class citizen in modern networked systems
* Software LBs, CDN nodes, DDoS mitigators depends on it

Increasing NICs speed

ETHERNET SPEEDS

1T 400(3%
400G @k
40G (i

10GbE 25GbE
0Gb
10G I’/v @ 40GeE 2

16 be ® () 2.5GbE

|

1000 b
Ethernet !

100M —"@
el s
10M |
1980 1990 2000 2010 2020

@ &
Ethernet Speed in Pozsible
Speed Development Future Speed

I Software Packet Processing in post Moore's Law Era

* Throughput is a first-class citizen in modern networked systems
* Software LBs, CDN nodes, DDoS mitigators depends on it

Increasing NICs speed Slowdown of Moore’s Law
20m 20m
19
ETHERNET SPEEDS Shrinking chips %% i
Number and length of transistors bought per § M
1T i - 400GBE # o Tonm
. ‘:’ggg g | T .r’ = ®{:}'Mbe 2012 2014 2015+
:gg m@;s ./—: Og:E @.:2;:2;; = ry 20 *Forecast Source: Linley Group
SGRE =
(GbE | 2.5GkE
16 4 | |
100Mb ' ®
Ethernet
100M 560 {/—r"’.
Etheriet
10M -+ @ |
1980 1990 2000 2010 2020
@ (@) @
Ethernet Speed in Pozsible
Speed Development Future Speed

L

ol 1

=i

= 100M 5w
Elhnr ot
10M - — ——...‘

ik
ETHERNE

T
400G -
100G -

10G |

1DDMb
Ethutnu

W o el

o Wy

- Bighl, % A
Ba 1
i e
- ;.
SEEY
15

AW Era

Moore’s Law

g 28nm
; 20nm

16nm
¢ 40nm 2012 2014* 2015*

E 2010

*Forecast Source: Linley Group

*a CPU core that is struggling to cope with
the increasing speed of networking

How to speed up packet processing?

* There have been significant efforts to speed up packet processing through
* Better stack design

Neg,,
Ork S
v ias Spe oy] s
lig 833:5,:;@ gfgg,h 0 Clallza tio
OS@cy,, Mbrig n f.
.. : : Cam g5 Ro Or
Rethinking Network Stack Design with Memory Snapshots .k Ro bUnngfs’;l; Ny, y, Pe.)'(),777
e Y of o
nce
“Cam,
Michael Chan Heiner Litz David R. Cheriton C.uk Agnive%? k Han
Department of Computer Science 'Ha”d/g CO//egg ZGC;J’
Stanford University CS'UC/.ac{.?g/?n

{mcfchan , hlitz , cheriton} @ stanford.edu

How to speed up software packet processing?

* There have been significant efforts to speed up packet processing through
* Better stack design
* Removing user-kernel crossings

K for icore ¥ Wory St
CP Stac ack
_\eve\ T p
A Highl Scalab ed, Haowon 07 Yinos c:"3"'2611‘
TCP: A Tams nark ambr/' On
Ong’ Shinaﬁ ® H} De l . - Obﬁri. a e r fo
EunYouns Xhmﬂr-,Dongs\l Ploying User-space TCP at CJ Fh
gunghwan «prnt Lingjun Zhy* v; L oud Scale with L
KA‘ST P X. o Ylfan Shen, ETC] XUTBO Shl T, UNA
cauel LItz tgyu Liao, Zhendan Yang, Zh(;ngqing,Cl?;ﬁ F\lf:; S]iu Ma,‘ Shtlguang Chen, Zhongyu Wan
Department of Comp » WeLLin, Yijun Hou, Rong Liy, C g, Haonan Wu,

Jiesheng Wy hao Shi, Jiaji Zhu, anq

Stanford Univ
{mcfchan , hlitz , cheriton} @starnyovru.co.. Alibaba Group

How to speed up software packet processing?

* There have been significant efforts to speed up packet processing through
* Better stack design
* Removing user-kernel crossings
* Running software at lower layers of the stack

a4 '
for M ple ks
Qtark {a t
Jevel abi€ \ Ck
Jable er- Sca (o RISSO Dec,
ﬂl h y SC‘c\ Stef a Fulv -1101"&“0 "\: aIIZat
mTC‘): A ux wih e ?o\“‘ic?o ﬂsso@‘)omm e R On /7 or P
. Lin o Bertr® Tealy fulvi : 10bay, ,, (3]
ing Matte no W \ | rf
SecY palitecni®® & Jito it a}w Egma‘\c CP at Cloud Scale with [, orm-
1anO “incay matte® Shi. Ts UNA
5ebase porino. 1105 son& . o 0 5L Ting Fu, Shy Ma, sp
\tecnicO 1‘;‘3“ po\ﬁa.\t ‘i\i“;{e g o\og,xz?m «ang, Zhongqmg Chen, Wei Lin Yiiu uﬁ”ang Chen, Zhongyu Wang, Haonan W
<cbastian® AL puture? \“@{umte“" Jieshe > Jun Hou, Rong Liu, Chao Shj Jiaji .
asque B‘;{m\\r Junso® ng Wu - Y131 Zhu, and
1Y . ino; . .
M‘Y’ag\i:cmcﬂ d‘::iévomo-“ -, naltz , cheriton } @ siaryovru.c .. Alibaba Group
. aovasd i
ma\l‘ﬁ‘mﬂ

How to speed up software packet processing?

* There have been significant efforts to speed up packet processing through
* Better stack design
* Removing user-kernel crossings
* Running software at lower layers of the stack
* Design better host interconnects

'

i for M \es k
e TCP ST h\e \ptab Staclr o
, Highty S¢ The nanoPU Rede51gn1ng the CPU-Network Interface
P
w1 C LNt to Minimize RPC Tail Latency for P
securin® SHorn,..
o Mian® Stephen Ibanez, Alex Mallery, Serhat Arslan, Theo Jepsen, LUNA
- , : :
Sﬁ‘?‘a‘?’tﬁ-\ﬁrmmovﬁﬁ;ﬁ Muhammad Shahbaz, Nick McKeown, Changhoon Kim
?o\"‘eg;;m‘“{xa“m' ©) 3Cl‘lhgyu ang, Haonan Wu,
" L Véxsq\‘e??ifx Stanford University a0 Shi, Jiaji Zhu, ang
N 3“\?:‘:“‘ d‘x’iﬂ‘f@;‘ p;)\xto.u -, rlllIZ , CREron j @ Siaryvru.c .. Albaba Group
oW asq [A\

I This talk: Scaling Packet Processing using multiple cores

* We present a principle that enables scaling a single, stateful packet
processing programs across multiple cores

What are the existing approaches? #1: Shared state

What are the existing approaches? #1: Shared state

 Stateless applications are easy to scale, however...

What are the existing approaches? #1: Shared state

 Stateless applications are easy to scale, however...

 ...many packet processing applications are stateful
* Maintain and update the regions of memory across many packets

What are the existing approaches? #1: Shared state

 Stateless applications are easy to scale, however...

 ...many packet processing applications are stateful
* Maintain and update the regions of memory across many packets

* Shared data structure + explicit synchronization

Shared Data

Structure
/
ok
Packet #1 NetW(_)rk
Function
J
Every packet %ﬁg
can go Packet #2 NetWQrk -
everywhere Function)

Function

ek
Packet #3 I::>[NEtwarK

J

What are the existing approaches? #1: Shared state

 Stateless applications are easy to scale, however...

 ...many packet processing applications are stateful
* Maintain and update the regions of memory across many packets

* Shared data structure + explicit synchronization

Every packet
can go
everywhere

Shared Data
Structure

Packet #1

Packet #2

Packet #3

Network gﬁé

Function

J

|

Network
Function

J

~

Network
Function

¥
P !

J

Throughput (Mpps)

N
o

W
o

N
o

=
o

Port knocking firewall

sharing (lock)

2

4

6 8 10 12
Number of cores

14

9

What are the existing approaches? #1: Shared state

Every packet
can go
everywhere

Shared Data

Packet #1

Packet #2

Packet #3

Network %@ﬁ%

Function

Structure

J

)

Network iﬂﬁé

Function

>

J

Network E:B:ﬁé

Function

J

Throughput (Mpps)

N
o

W
o

N
o

=
o

Port knocking firewall

sharing (lock)

2

4

6 8 10 12
Number of cores

14

J

What are the existing approaches? #1: Shared state

X Flows in realistic network traffic follow heavy-tailed distributions 4
 Significant memory contention if packet are spread across cores @@

Every packet
can go
everywhere

Shared Data

Packet #1

Packet #2

Packet #3

Network %‘ﬁ%

Function

Structure

J

|

Network ﬁ:ﬂﬁé

Function

J

~

Network %ﬁé

Function

>

J

Throughput (Mpps)

N
o

W
o

N
o

=
o

Port knocking firewall

sharing (lock)

2 4 6 8 10 12 14
Number of cores

What are the existing approaches? #1: Shared state

X Flows in realistic network traffic follow heavy-tailed distributions 4
 Significant memory contention if packet are spread across cores /%@\

X In many programs, state update operations are too complex to be
implemented in transactional hardware (i.e., fetch-add-write)

Every packet
can go
everywhere

Shared Data

Packet #1

Packet #2

Packet #3

Network gf;ﬁé

Function

Structure

J

|

Network ﬁf}ﬁ%

Function

>

J

~

Network éﬁ%

Function

J

Throughput (Mpps)

N
o

W
o

N
o

=
o

Port knocking firewall

sharing (lock)

2 4 6 8 10 12 14
Number of cores

What are the existing approaches? #2: Sharding

What are the existing approaches? #2: Sharding

* Process packets that update the same memory at the same core, sharding
the overall state of the program across cores

* NIC RSS to direct packets from the same flow to the same core + shared-nothing
data structures

* The most used technique today

What are the existing approaches? #2: Sharding

* Process packets that update the same memory at the same core, sharding
the overall state of the program across cores

* NIC RSS to direct packets from the same flow to the same core + shared-nothing
data structures

* The most used technique today

4 o]
Network %ﬁ%
Flow #1 .
f’ Function

\- J

Per-CPU Data
Structures

6 T
Flow #2 :‘ =F - 3 N Wemerts et —l

Function
\ J
RSS \

& [Network ﬁ‘ﬁé

Function
\\§ J

Flow #3

11

I What are the existing approaches? #2: Sharding

Flow #1

Flow #2

Flow #3

Network %:B:j‘“:é

Function

J

e
*

RSS

AN

Network éﬁjt%

Function

J

Network éﬁjt%

Function

Per-CPU Data
Structures

J

12

What are the existing approaches? #2: Sharding

X Not always possible to avoid coordination through sharding

* There may be parts of the program state shared across packets (e.g., list of free ports in a
NAT)

Network %T,E:j‘“:é

Fl H1)
oW ﬂ{ Function)

< ‘

f Network é‘ﬁé

T - Per-CPU Data
Asy G2 -‘ | Function

Structures

/
RSS\ N)

%_1 f Network é‘ﬁé

Function

Flow #3 |~

- J

12

What are the existing approaches? #2: Sharding

X Not always possible to avoid coordination through sharding

* There may be parts of the program state shared across packets (e.g., list of free ports in a
NAT)

X Today’s NIC RSS use a limited number of packet’s header fields to steer packets

Network %‘ﬁ%

ADH L |y ﬂ{ Function)

Per-CPU Data
Structures

q Sk
Flow #2 r‘ =4k Nl

Function
L J
RSS \

_] f Network a‘ﬁg

Flow #3 |~ .
Function

- J

12

What are the existing approaches? #2: Sharding

X Not always possible to avoid coordination through sharding

* There may be parts of the program state shared across packets (e.g., list of free ports in a
NAT)

X Today’s NIC RSS use a limited number of packet’s header fields to steer packets
X Creates load imbalance across cores if some flows are heavier than others

Py
Networka‘:y’m‘:E
Flow #1) L <
;’ Function ‘
/)
4 u
= Network ﬁ‘ﬁé Per-CPU Data
Flow #2 »l =W >) = <«
L Function) Structures
RSS \
‘ ok
Flow #3 [~ §1 Netw?rk —> <
Function
\ J
12

What are the existing approaches? #2: Sharding

X Not always possible to avoid coordination through sharding

* There may be parts of the program state shared across packets (e.g., list of free ports in a
NAT)

X Today’s NIC RSS use a limited number of packet’s header fields to steer packets
X Creates load imbalance across cores if some flows are heavier than others

Port knocking firewall

|
Networka‘:y’m‘:E —
Flow #1 [. —> < 340
;’ Function ‘ a
/ g =
+ 301
4 u) H
Flow #2 | =#F, y| Network aﬁﬁé—’ . |Per-CPUData 2 SEarm'g “Ods%
=: Function Structures 90 —® - sharding (RSS)
\ \) = g H-..\--&o—o
RSS =)
s v 10
_1 Networka‘:é“‘:E {
Flow #3 |~) ———> < ! ! .
L Function) 2 4 6 8 10 12 14
Number of cores

12

State Compute Replication (SRC):
Scaling Single, Stateful Flows across multiple cores

Port knocking firewall

.“,0-0
w40 py +*Y
o
= ~~*
= /
= 25 R ~- SCR
o ’/ sharing (lock)
S50l 1 —e - sharding (RSS)
o I1Bc® ~9 % 9 -0-
e I~" .\."...’.
101y

2 4 6 8 10 12 14
Number of cores

State Compute Replication (SRC):
Scaling Single, Stateful Flows across multiple cores

Port knocking firewall

P 4

M Y G
340 » _
o » ‘o Throughput scales linearly,
E / —9- SCR deterministically and
s 30 /’ hari lock independently from flow
E— yY S arerg (lock) size distribution
S50, I -® - sharding (RSS)
o () 99" 0—9 @~

101§

2 4 6 8 10 12 14
Number of cores
13

How does this work? — Running Example

* Port knocking firewall

* If a source transmits IPv4/TCP packets with the correct sequence of TCP
destination ports, all further communication is permitted

[(Port %j‘l;j“% - @

Packet #1
ATKE ﬂ knocking
\ J

u o(\/’\ o,
[Port aj‘;ﬁ% £ @ 2

\ L knocking)

Packet #2 :‘ .=_‘ # I

0 b
Mo P e

knocking)

14

How does this work? — Running Example

* Port knocking firewall

o If 3 SOUrCIN e el T P
destina Idea #1: Replication for correctness

Send every packet reliably to every core,

det®] and replicate the state and computation on
every core
Packet #2 'I =:W'\ /L knocking = | — — !
Packet #3 %{ Por’F gﬁ% t;/
knocking) S./

State Compute Replication (SRC):
Scaling Single, Stateful Flows across multiple cores

State Compute Replication (SRC):
Scaling Single, Stateful Flows across multiple cores

* Packets can be perfectly sprayed across all the cores (or a set of cores)

State Compute Replication (SRC):
Scaling Single, Stateful Flows across multiple cores

* Packets can be perfectly sprayed across all the cores (or a set of cores)

Port u
Packet #1 ﬂ{ knocking ﬁ‘T:}

q Sk
Packet #2 :‘ ": Pl

\ L knocking)
Packet #3

1|
.y

%f Port E@ﬁ%

L knocking)

State Compute Replication (SRC):
Scaling Single, Stateful Flows across multiple cores

* Packets can be perfectly sprayed across all the cores (or a set of cores)
* Every core will have its own state without sharing between the cores

Port u
Packet #1 ﬂ{ knocking ﬁf}

4 u
-‘ oo Port %ﬁ%
Packet #2 > :

\ L knocking)
Packet #3

1|
.y

&f Port E!ﬁ%

knocking)

\-

State Compute Replication (SRC):

Scaling Single, Stateful Flows across multiple cores

* Packets can be perfectly sprayed across all the cores (or a set of cores)
* Every core will have its own state without sharing between the cores

Packet #1

Packet #2

Packet #3

ol
N\

Port
knocklng

s

\-

Port Q’D?
knocking

(Port %‘“;E

\-

—’.4_

—

Per-CPU Data
Structures

knocklng

15

State Compute Replication (SRC):
Scaling Single, Stateful Flows across multiple cores

* Packets can be perfectly sprayed across all the cores (or a set of cores)
* Every core will have its own state without sharing between the cores
e Given a set of N cores, every packet p willgotocorec=p % (N-1)

Port
Packet #1
AcKE knockmg i ' ‘
P
/ Port Q’B’

= Per-CPU Data
Packet #2 o | =4 S P .
knockmg Structures

\§: Port aT;f:E

—»

Packet #3
knocklng

How does this work? — Running Example

* Port knocking firewall

* If a source transmits IPv4/TCP packets with the correct sequence of TCP
destination ports, all further communication is permitted

[(Port %j‘l;j“% - @

Packet #1
ATKE ﬂ knocking
\ J

u o(\/’\ o,
[Port aj‘;ﬁ% £ @ 2

\ L knocking)

Packet #2 :‘ .=_‘ # I

0 b
Mo P e

knocking)

16

How does this work? — Running Example

* Port knocking firewall

* If a source transmits IPv4/TCP packets with the correct sequence of TCP
destination ports, all further communication is permitted

(PortD %j‘l;j“% - @

Packet #1
ATKE ﬂ knocking
\ J

u o(\/’\ o,
[Port aj‘;ﬁ% £ @ 2

\ L knocking)

Packet #2 :‘ .=_‘ # I

0 b
Mo P e

knocking)

16

How does this work? — Running Example

* Port knocking firewall

* If a source transmits IPv4/TCP packets with the correct sequence of TCP
destination ports, all further communication is permitted

(PortD %j‘l;j“% - @

Packet #1
ATKE ﬂ knocking
\ J

u o(\/’\ o,
[Port aj‘;ﬁ% £ @ 2

\ L knocking)

Packet #2 :‘ .=_‘ # I

0 b
Mo P e

knocking)

16

How does this work? — Running Example

* Port knocking firewall

* If a source transmits IPv4/TCP packets with the correct sequence of TCP
destination ports, all further communication is permitted

[(Port %j‘l;j“% - @

Packet #1
ATKE ﬂ knocking
\ J

u o(\/’\ o,
[Port aj‘;ﬁ% £ @ 2

\ L knocking)

Packet #2 :‘ .=_‘ # I

0 b
Mo P e

knocking)

17

How does this work? — Running Example

* Port knocking firewall

e fasourc~*— '~ 2o oot bl oo e - S LTCP
destina Idea #2: State Compute Replication

Piggyback a bounded recent packet history
on each packet sent to a core
to use replication (#1)

<§§§§§ '/L knocking)
%{ Port aﬁj&

knocking)

Packet #1

Packet #2 > I —Th

Packet #3

I How does this work? — Running Example

4 u
Packet #1 Por’F sl
ﬂ L knocking

pkt #2 [] / g :
Packet #2 »| =4k > Por’F ——
\ L knocking
Port
Packet #3 S
acke knockmg i '

I How does this work? — Running Example

4 u
Port '
Packet #1) il
ﬂ\ knocking i
pkt #2 / P L
Packet #2 > ';'#. > K PO;:F sﬁ%— ' S
| knocking
[1]
+ md pkt #1 E‘?‘:}
Packet #3 knz(c)ltlcng ' —

How does this work? — Running Example

 Metadata

* Information of previous packets needed to
update the state machine

* In this example: I3proto, l14proto, srclP, dstPort

Packet #1 | Aol aj‘i%_» sl
/ﬂ\ knocking)
pkt #2 p "
= 4 Port ﬁjﬁﬁé
Packet #2 » | =W > g - —
| knocking |
[1]
+ md pkt #1 %_] Port %ﬁg
Packet #3 — » S
acke knocking)

How does this work? — Running Example

 Metadata

* Information of previous packets needed to
update the state machine

* In this example: I3proto, l14proto, srclP, dstPort

Packet #1 (Helnt aj‘;ﬁ%
/ﬂ\ knocking)
pkt #2 p "
e —
Packet #2 » | = ' > K]
\ L nocking)
+ md pkt #1 %_] Port %ﬁg
Packet #3 { e)

How does this work? — Running Example

 Metadata

* Information of previous packets needed to
update the state machine

* In this example: I3proto, l14proto, srclP, dstPort

Packet #1 | Aol aj‘;ﬁ%
/ﬂ\ knocking)
pkt #2 £
sl (P %ﬁg
Packet #2 » | = # ' > K (T_Lg
\ | knocking
+ md pkt #1 %_] Port %ﬁg
Packet #3 { e)

How does this work? — Running Example

 Metadata

* Information of previous packets needed to
update the state machine

* In this example: I3proto, l14proto, srclP, dstPort

Packet #1 | Aol aj‘i%_» sl
/ﬂ\ knocking)
pkt #2 p "
= 4 Port ﬁjﬁﬁé
Packet #2 > = [> k k L I
\ | knocking |
— + md pkt #1 %_] Port %ﬁg
Packet # — —
acke knocking)

How does this work? — Running Example

 Metadata

* Information of previous packets needed to
update the state machine

* In this example: I3proto, l4proto, srclP, dstPort

4 u
Port iik
Packet #1) —> sl
;53 knocking
/ \ :
4 u
= 4 Port ﬁjﬁﬁé
Packet #2 > = [> . L I
knocking
. J
pkt #3 [\

Packet #3

%_]{ Port e

knocking)

How does this work? — Running Example

 Metadata

* Information of previous packets needed to
update the state machine

* In this example: I3proto, l4proto, srclP, dstPort

Packet #1

- | S8

2

Port %j‘l;ﬁé

> N’

knocking)

Packet #2

pkt #3

Packet #3

[T 1]
+ md pkt #1
+ md pkt #2

Port éﬁﬁ

knocking)

Port éﬁﬁ

knocking)

19

How does this work? — Running Example

 Metadata

* Information of previous packets needed to
update the state machine

* In this example: I3proto, l4proto, srclP, dstPort

I s Coomeet 2
Port -
Packet #1 knocking J / @

2

Packet #2 :‘ =4 >

\ L knocking)
kt #3
Pt + md pkt #1 §]£ . aﬁﬁé

Packet #3 + md pkt #2 i
knocking)

19

How does this work? — Running Example

 Metadata

* Information of previous packets needed to
update the state machine

* In this example: I3proto, l4proto, srclP, dstPort

I s Coomeet 2
Port -
Packet #1 knocking J / @

2

Packet #2 :‘ =4 >

\ L knocking)
kt #3
Pt + md pkt #1 §]£ . aﬁﬁé

Packet #3 + md pkt #2 il
knocking)

19

How does this work? — Running Example

 Metadata

* Information of previous packets needed to
update the state machine

* In this example: I3proto, l4proto, srclP, dstPort

o W <>
Port .
knocking) / @

Packet #1 %]\
/ f Port éﬁﬁ

Packet #2 :‘ =4 >

\ L knocking)

pkt #3

+ md pkt #1 §]£ aﬁﬁé
ﬁrt

Packet #3 + md pkt #2

knocking)

19

How does this work? — Running Example

 Metadata

* Information of previous packets needed to
update the state machine

* In this example: I3proto, l4proto, srclP, dstPort

Packet #1

2

Port %j‘l;ﬁé

knocking)

Packet #2

pkt #3

Packet #3

" ;#/
+ md pktk

+ md pkt #2

Port éﬁﬁ

knocking)

Port éﬁﬁ

> N’

knocking)

oot
/7 x
oot

19

I How does this work? — Running Example

pkt #4 []
4 u
Port '
Packet #1) sl
ﬂ\ knocking i
/ 4 u
> Port B
\ knocking
_
Packet #3 knz(c)ltlcng ﬁ—‘ ' —

Packet #2 :‘ .=_. # I

How does this work? — Running Example

pkt #4
4 u
Port '
Packet #1) il
ﬂ\ knocking i
/ 4 u
Packet #2 > ;_.# | > K POI? ' S
| Knocking
[T 1]
+ md pkt #2 Port
Packet #3 + md pkt #3 knocklng ' —

How does this work? — Running Example

pkt #4
4 u
Packet #1 Pﬁr‘K_tD ij%— ' ——
ﬂ\ knocking
/ 4 u
Packet #2 :‘ ';'#. > K POI? ' S
\ | knocking
+ md pkt #2 Port
Packet #3 + md pkt #3 knocklng ' .

How does this work? — Running Example

pkt #4
4 u
Packet #1 Pﬁ? ij%— ' ——
ﬂ\ knocking
/ 4 u
Packet #2 :‘ ';'#. > K POI? ' S
\ | knocking
+ md pkt #2 Port
Packet #3 + md pkt #3 knocklng ' .

How does this work? — Running Example

pkt #4
4 u
Port
Packet #1 Ii_lf; ij%— ' il
ﬂ\ knocking
/ 4 u
Packet #2 :‘ ';'#. > K POI? ' S
\ | Knocking
+ md pkt #2 Port
Packet #3 + md pkt #3 knocklng ' —

How does this work? — Running Example

* In general, every packet has:
* Currentpkt +) md(N — 1)
e Where N is the number of cores

pkt #4
Packet #1 [Plf[;t aﬁg—, .
/ﬂ\ knocking)
oo f Port ﬁjﬁﬁé
Packet #2 > E#. > Y " £ - —
\ | knocking |
+ md pkt #2 %_1 Port %ﬁg
Packet #3 + md pkt #3 knocking — S
J

Operationalizing SCR: The Packet History Sequencer

Operationalizing SCR: The Packet History Sequencer

f(R2), T(p-1), P
— Core 1 Si-3

\

Sequencer f(p1), f(R), Piss
— COre 2 Si;

f(R), T(R+1), Pis2
— Core 3 Si-1 »

\

Packets

f(R), f(R+1), f(R+2)

Operationalizing SCR: The Packet History Sequencer

1. Steer packets across cores in round-robin fashion

f(R2), T(p-1), P
— Core 1 Si-3

\

Sequencer f(p1), f(R), Piss
— COre 2 Si;

f(R), T(R+1), Pis2
— Core 3 Si-1 »

\

Packets

f(R), f(R+1), f(R+2)

Operationalizing SCR: The Packet History Sequencer

1. Steer packets across cores in round-robin fashion
2. Maintain the most recent packet history across all packets

f(p2), f(P-1), P

— Core 1 Si-3 »
Sequencer f(p1), f(R), Piss
— COre 2 S, |=p

Packets

f(R), f(R+1), f(R+2)

f(R), T(R+1), Pis2
— Core 3 Si-1 »

Operationalizing SCR: The Packet History Sequencer

1. Steer packets across cores in round-robin fashion
2. Maintain the most recent packet history across all packets
3. Piggyback the packet history on each packet steered to the cores

f(p2), f(P-1), P

— Core 1 Si-3 »
Sequencer f(p1), f(R), Piss
— COre 2 S, |=p

Packets

f(R), f(R+1), f(R+2)

f(R), T(R+1), Pis2
— Core 3 Si-1 »

Operationalizing SCR: The Packet History Sequencer

1. Steer packets across cores in round-robin fashion
2. Maintain the most recent packet history across all packets
3. Piggyback the packet history on each packet steered to the cores

Programmable

TOR SWitCh P f(p-Z)a f(p-'])’ pi
—p| Core 1 Siz |=P
Sequencer f(p1), f(R), Piss
— COre 2 S, |=p

f(R), f(R+1), f(R+2)

f(R), T(R+1), Pis2
— Core 3 Si-1 »

21

Operationalizing SCR: The Packet History Sequencer

1. Steer packets across cores in round-robin fashion
2. Maintain the most recent packet history across all packets
3. Piggyback the packet history on each packet steered to the cores

Programmable

TOR switch P f(p-Z)a f(p-'])’ pi
— — Core 1 Si-3 »
Sequencer f(p-‘l)’ f(p): Pi+1
SmartNICs with —| COre 2 Sip .

f(R), f(R+1), f(R+2)

programmable

f(R), T(R+1), Pis2
— Core 3 Si-1 »

NetFPGA

21

I Operationalizing SCR: SCR-Aware Programming

struct hdr* eth = pkt_start;
int 13proto = eth->proto;
int off = sizeof(struct e dr);

struct iphdr* iph = pkt_start + off;
int l4proto = iph->protocol;
® if (13proto != IPv4 || l4proto != TCP)

int 13proto, l4proto, srcip, dport, i, j; return XDP_DROP;

for (j = 0; j < NUM_META; j++) { int srcip = iph->src;
i = (index + j) % NUM_META; off += sizeof(struct)5
struct *pkt = data + 1 * sizeof(meta); struct dr* tcp = pkt_start + off;

13proto pkt->13proto; : - e c
l4proto = pkt->l4proto; ULike fo el EeBLadRoGE;

srcip = pkt->srcip;

dport = pkt->dport; ;)

if (13proto != IPv4 || l4proto != TCP) int state = map_lookup(states, srcip);
continue; int new_state = get_new_state(state, dport);

map_update(states, srcip, new_state);

h :
if (new_state == OPEN)
pkt_start = data + return XDP_TX;
NUM_META * sizeof(struct

+ sizeof(index); return XDP_DROP;

I Operationalizing SCR: SCR-Aware Programming

* Define per-core state data structures and ©

per-packet metadata structures. A

int 13proto = eth->proto;
int off = sizeof(struct e dr);

struct iphdr* iph = pkt_start + off;
int l4proto = iph->protocol;
® if (13proto != IPv4 || l4proto != TCP)
int 13proto, l4proto, srcip, dport, i, j; LR LAl PR
for (j = 0; j < NUM_META; j++) { int srcip = iph->src;
i = (index + j) % NUM_META; off += sizeof(struct)
ST RHECE 1 *pkt = data + 1 * sizeof(meta); Strict dr*x tcp = pkt_start + off;

13proto = pkt->13proto; : - e c
l4proto = pkt->l4proto; ULike fo el ECELSOROi

srcip = pkt->srcip;

dport = pkt->dport; ;)

if (13proto != IPv4 || l4proto != TCP) int state = map_lookup(states, srcip);
continue; int new_state = get_new_state(state, dport);

map_update(states, srcip, new_state);

h :
if (new_state == OPEN)
pkt_start = data + return XDP_TX;
NUM_META * sizeof(struct

+ sizeof(index); return XDP_DROP;

I Operationalizing SCR: SCR-Aware Programming

* Define per-core state data structures and ©
per-packet metadata structures. e —
int 13proto = eth—>proto; :

* Fast-forward the state machine using the [y eitaheu Nt
packet history.

struct iphdr* iph = pkt_start + off;
int l4proto = iph->protocol;
® if (13proto != IPv4 || l4proto != TCP)
int 13proto, l4proto, srcip, dport, i, j; LR LAl PR
for (j = 0; j < NUM_META; j++) { int srcip = iph->src;

i = (index + j) % NUM_META; off += sizeof(struct)

ST RHECE 1 *pkt = data + 1 * sizeof(meta); Strict dr*x tcp = pkt_start + off;

13proto pkt->13proto; : - e c
l4proto = pkt->l4proto; ULike fo el ECELSOROi

srcip = pkt->srcip;

dport = pkt->dport; ;)

if (13proto != IPv4 || l4proto != TCP) int state = map_lookup(states, srcip);
continue; int new_state = get_new_state(state, dport);

map_update(states, srcip, new_state);

h :
if (new_state == OPEN)
pkt_start = data + return XDP_TX;
NUM_META * sizeof(struct

+ sizeof(index); return XDP_DROP;

Throughput (Mpps)

Experimental Results - Throughput

* We tested SCR on a set of eBPF/XDP applications, using realistic traffic

Ul
o

N
o

W
o

N
o

=
o

DDoS Mitigator

7
T akaha =& WP

’

sharing (atomic hw)
- sharding (RSS)

traces (CAIDA, University DC)

Port-knocking firewall

S
o

W
o

N
o

Throughput (Mpps)

=
o

2

4 6 8

Number of cores

»

’/

!

L 4
-? oo
/ -9~ SCR
sharing (lock)
—® - sharding (RSS)

o~ -9 o
/I~.’.* " - o-0

4

Throughput (Mpps)

10 12 14

2

4 6 8
Number of cores

10 12 14

(-
o

Token bucket policer

W
o

N
o

&

-

v
/’«
&
-&- SCR

//‘ sharing (lock)

} 4 —® - sharding (RSS)
/
/ O=—= .r'—..—.~..
an 4

1 2 3 4 5 6 7

Number of cores

23

Throughput (Mpps)

Experimental Results - Throughput

e \We tested CrR An a cat nf aARDE/YND annlicratinne 1icina raa“cfic trafflc

Ul
o

N
o

W
o

N
o

-
o

traces (C
SCR is the only scaling technique that can
bbo: scale the throughput of all the stateful cretpoleer
packet-processing programs we evaluated PR
- . &~
- across multiple cores, regardless of the flow - scr
) sharing (lock)
4. size distribution. . sharding (RSS)
{,_.."0—‘ ,_.,.—0--—.~_.
W [T T Seassssl V[T —aa——
2 4 6 8 10 12 14 2 4 6 8 10 12 14 1 2 3 4 5 6 7

Number of cores Number of cores

Number of cores

=
o

L2 hit ratio

O
@

o
ok

Why does SCR scales better than the other techniques?

L2 hit ratio: 8 cores

b —————-*
"‘__.__.__./.

SCR
sharing (lock)
—e - sharding (RSS)

IPC

10 20 30
TX rate (Mpps)

IPC: 8 cores

I -§- SCR

sharing (lock)

| —¢ = sharding (RSS)

ESSSSE

a 1 L

-

TX rate (Mpps)

Latency (ns)

~
U1
<

Ul
o
o

N
Ul
o

Latency: 8 cores

| == —————-¢

SCR
sharing (lock)
—e - sharding (RSS)

- -

o —: 0 —@: —@— :0—: =@ —®

5 10 15 20 25 30 35
TX rate (Mpps)

25

=
o

L2 hit ratio

O
@

o
ok

Why does SCR scales better than the other techniques?

L2 hit ratio: 8 cores

~*———0- -o——‘

o
-¢- SCR

sharing (lock)
—e - sharding (RSS)

\

10 20 30
TX rate (Mpps)

IPC

Lock and cache line
contention across

cores

IPC: 8 cores

I -§- SCR

sharing (lock)

| —¢ = sharding (RSS)

ESSSSE

1 I L

-

TX rate (Mpps)

Latency (ns)

~
U1
<

Ul
o
o

N
Ul
o

Latency: 8 cores

| === ——————¢

SCR
sharing (lock)
—e - sharding (RSS)

- -

o —: 0 —@: —@— :0—: =@ —®

5 10 15 20 25 30 35
TX rate (Mpps)

25

=
o

O

L2 hit ratio

o

Why does SCR scales better than the other techniques?

L2 hit ratio: 8 cores IPC: 8 cores Latency: 8 cores

~b—-—-0o——-—* _ T
> - 31 -¢-
"‘__.__.__../. I SCR

*—.. o : -4 1 750;
sl —e- SCR , sharing (lock) "“}| ¢ —e- SCR
sharing (lock) | & —+- shardlng (RSS) LC>)‘500- sharing (lock)
| \ —® = sharding (RSS) | b —e - sharding (RSS)
§) 1 © 250
1 4 - -9
\ B et —e—0-e.—s
10 20 30 5 10 15 20 25 30 35
TX rate (Mpps) TX rate (Mpps) TX rate (Mpps)

High variation,

Lock and. cache line indicating imbalance
contention across of CPU work

cores 25

=
o

O

L2 hit ratio

o

Why does SCR scales better than the other techniques?

Consistent high IPC with more cores,
because of metadata history processing

L2 hit ratio: 8 cores IPC: 8 cores \ Latency: 8 cores
- - L
et haring (lock) @
g —e- SCR , snaring - C -¢- SCR

sharing (lock) | & —+- shardlng (RSS) LC>J’ - sharing (lock)

6L\ - sharding (RSS) 1. 9 —e - sharding (RSS)
520 -0 -4—-¢
\ I 1 o —e—e—e.e s

10 20 30 5 10 15 20 25 30 35
TX rate (Mpps) TX rate (Mpps) TX rate (Mpps)

High variation,

Lock and. cache line indicating imbalance
contention across of CPU work

cores 25

All that glitters is not gold - SCR limitations

1. If the compute latency increases in comparison to the dispatch latency,
the effectiveness of SCR’s multi-core scaling reduces

e Every core has to do “more work” to catch up with the state

A
¢

= 7 cores
330 N, 4 cores
s N\, ®- 1 core
S \,
220 N,
= »
=10 N
— [TERELLEELEE ®-.9. 0.
O g
0 | |
26 28 210 212

Compute latency (ns)

All that glisters is not gold! SCR limitations

token bucket policer

All that glisters is not gold! SCR limitations

2. SCR’s attachment of histories to packets incurs non-negligible overheads

token bucket policer

All that glisters is not gold! SCR limitations

2. SCR’s attachment of histories to packets incurs non-negligible overheads

token bucket policer

All that glisters is not gold! SCR limitations

2. SCR’s attachment of histories to packets incurs non-negligible overheads

token bucket policer
* Can increase L3 cache pressure due to
higher DDIO cache occupancy

All that glisters is not gold! SCR limitations

2. SCR’s attachment of histories to packets incurs non-negligible overheads

token bucket policer
* Can increase L3 cache pressure due to
higher DDIO cache occupancy

* Increases PCle transactions and
bandwidth

All that glisters is not gold! SCR limitations

2. SCR’s attachment of histories to packets incurs non-negligible overheads

token bucket policer
* Can increase L3 cache pressure due to
higher DDIO cache occupancy

* Increases PCle transactions and
bandwidth

* When packet history is appended outside
the NIC (e.g., TOR switch), SCR may
saturate the NIC earlier than other
approaches

All that glisters is not gold! SCR limitations

2. SCR’s attachment of histories to packets incurs non-negligible overheads

After 11 cores, the

CPU is no longer the token bucket policer

e Can increase L3 cache pressure due to ~ PotleneckforscR 7,

higher DDIO cache occupancy _30 .‘/’ ?
* Increases PCle transactions and s "'

bandwidth 21 &

< /

* When packet history is appended outside glo_ 2 Jd oLl

the NIC (e.g., TOR switch), SCR may P IR ALEL S ROR Ry

saturate the NIC earlier than other 0

2 4 6 8 10 12 14
approaches Number of cores

27

Handling Packet Loss

Programmable
TOR switch

SmartNICs with
programmable
pipelines

NetFPGH

f(p2), f(P-1), P
———

Sequencer f(p1), f(R), Piss
—

f(R), f(P+1), Pis2
e —

f(R), f(R+1), f(R+2)

Core 1 Si-3

Core 2 Si-2

Core 3 Si-1

\

\

28

Handling Packet Loss

e Packets can be lost either

Programmable
TOR switch

f(R2), (p1), P
— Core 1 Si-3

\

Sequencer f(p-1)’ f(p)’ Pi+1
SmartNICs with —— Core 2 S

programmable

\

Packets

f(R), f(R+1), f(R+2)

f(R), T(R+1), P2
— Core 3 Si-1

pipelines

NetFPGH

Handling Packet Loss

e Packets can be lost either
* (1) prior to the sequencer

Programmable
TOR switch

x

SmartNICs with
programmable
pipelines

NetFPGH

v

Packets

f(p2), f(P-1), P
——

Sequencer f(p1), f(R), Piss
—

f(R), f(P+1), Pis2
 ——

f(R), f(R+1), f(R+2)

Core 1 Si-3

Core 2 Si-2

Core 3 Si-1

\

\

28

Handling Packet Loss

* Packets can be lost either
* (1) prior to the sequencer
* (2) after the sequencer but prior to processing at a CPU core

Programmable

TOR switch
f(p2), f(P.1), P
—
! Sequencer f(p-1)’ f(ﬂ)’ pi+1
SmartNICs with —
programmable f(p), f(p+1), f(R+2)
pramme f(R), F(Pe), Prz
—

NetFPGH

Core 1 Si-3

Core 2 Si-2

Core 3 Si-1

\

\

28

Handling Packet Loss

* Packets can be lost either
* (1) prior to the sequencer
* (2) after the sequencer but prior to processing at a CPU core
 (3) after processing at a core.

Programmable
TOR switch

f(R2), (p1), P
— Core 1 Si-3

Sequencer f(p1), f(R), Piss

v

Packets

— Core 2 Si-2

f(R), T(R+1), P2
— Core 3 Si-1 »

SmartNICs with
programmable
pipelines

f(R), f(R+1), f(R+2)

NetFPGA)

Handling Packet Loss

f(R2), T(p-1), P
— Core 1 Si-3

Programmable
TOR switch [

\

Sequencer f(A1), f(R), P+
—| Core 2 S

Packets

f(R), f(R+1), f(R+2)

\

f(R), T(R+1), Pis2
— Core 3 Si-1

Handling Packet Loss

* The only one that represents a problem is (2)

f(p2), f(P-1), P
——

Programmable
TOR switch [

Sequencer f(A1), f(R), P+
—

f(p), f(P+1), Pis2
—

Packets

f(R), f(R+1), f(R+2)

Core 1 Si-3

Core 2 Si-2

Core 3 Si-1

\

\

20

Handling Packet Loss

* The only one that represents a problem is (2)

* Only in the case where the sequence is deployed on a top-of-the-rack
switch

* We can run link-level flow control mechanism like PFC to prevent packet loss
between the switch and server cores.

f(p2), f(P-1), P

Programmable

TOR switch [—eP>| Core 1 Siz |=P
Sequencer f(p.1), T(R), Pr core 2B -
— re iD

f(R), f(R+1), f(R+2)

Packets

f(R), T(R+1), Pis2
— Core 3 Si-1 »

29

Handling Packet Loss - Solution

Handling Packet Loss - Solution

* A core can either read the full flow state from a more up-to-date core

Handling Packet Loss - Solution

* A core can either read the full flow state from a more up-to-date core

e ...0r it can read the packet history from either the sequencer or a log
written by a more up-to-date core

Handling Packet Loss - Solution

* A core can either read the full flow state from a more up-to-date core

e ...0r it can read the packet history from either the sequencer or a log
written by a more up-to-date core

* To achieve this, we:
1. Have the sequence attach an incrementing sequence number to each packet
2. Use a per-core, lockless, single-writer multiple-reader log

3. Introduce an algorithm to catch up the flow state on each core upon detection
of loss

Conclusions

Conclusions

» State Compute Replication (SCR) is a principle that enables scaling
stateful packet processing programs across multiple cores

Conclusions

» State Compute Replication (SCR) is a principle that enables scaling
stateful packet processing programs across multiple cores

* It leverages a packet history sequencer to collect the history of the
packets and propagate it to CPU cores
 Canrunon a NIC or TOR switch

Conclusions

» State Compute Replication (SCR) is a principle that enables scaling
stateful packet processing programs across multiple cores

* It leverages a packet history sequencer to collect the history of the
packets and propagate it to CPU cores
 Canrunon a NIC or TOR switch

* Applications using SCR need to be modified to replicate the program state
and keep private copies per core

* A compiler can do it automatically!

Conclusions

» State Compute Replication (SCR) is a principle that enables scaling
stateful packet processing programs across multiple cores

* It leverages a packet history sequencer to collect the history of the
packets and propagate it to CPU cores
 Canrunon a NIC or TOR switch

* Applications using SCR need to be modified to replicate the program state
and keep private copies per core

* A compiler can do it automatically!

* Our experiment show that SCR can scale total packet processing
throughput linearly with cores, deterministically and independent of
flow size distribution

	State-Compute Replication: Parallelizing High-Speed Stateful Packet Processing
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	State Compute Replication (SRC): �Scaling Single, Stateful Flows across multiple cores
	State Compute Replication (SRC): �Scaling Single, Stateful Flows across multiple cores
	Slide Number 29
	Slide Number 30
	State Compute Replication (SRC): �Scaling Single, Stateful Flows across multiple cores
	State Compute Replication (SRC): �Scaling Single, Stateful Flows across multiple cores
	State Compute Replication (SRC): �Scaling Single, Stateful Flows across multiple cores
	State Compute Replication (SRC): �Scaling Single, Stateful Flows across multiple cores
	State Compute Replication (SRC): �Scaling Single, Stateful Flows across multiple cores
	State Compute Replication (SRC): �Scaling Single, Stateful Flows across multiple cores
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Slide Number 83
	Slide Number 84
	Slide Number 85
	Slide Number 86
	Slide Number 87
	Slide Number 88
	Slide Number 89
	Slide Number 90
	Slide Number 91
	Slide Number 92
	Slide Number 93
	Slide Number 94
	Slide Number 95
	Slide Number 96
	Slide Number 97
	Slide Number 98
	Slide Number 99
	Slide Number 100

