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Software Packet Processing in post Moore's Law Era

* Throughput is a first-class citizen in modern networked systems
* Software LBs, CDN nodes, DDoS mitigators depends on it
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I Software Packet Processing in post Moore's Law Era

* Throughput is a first-class citizen in modern networked systems
* Software LBs, CDN nodes, DDoS mitigators depends on it

Increasing NICs speed Slowdown of Moore’s Law
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How to speed up packet processing?

* There have been significant efforts to speed up packet processing through
* Better stack design
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How to speed up software packet processing?

* There have been significant efforts to speed up packet processing through
* Better stack design
* Removing user-kernel crossings
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How to speed up software packet processing?

* There have been significant efforts to speed up packet processing through
* Better stack design
* Removing user-kernel crossings
* Running software at lower layers of the stack
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How to speed up software packet processing?

* There have been significant efforts to speed up packet processing through
* Better stack design
* Removing user-kernel crossings
* Running software at lower layers of the stack
* Design better host interconnects
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I This talk: Scaling Packet Processing using multiple cores

* We present a principle that enables scaling a single, stateful packet
processing programs across multiple cores
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What are the existing approaches? #1: Shared state

X Flows in realistic network traffic follow heavy-tailed distributions 4
 Significant memory contention if packet are spread across cores @@
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What are the existing approaches? #1: Shared state

X Flows in realistic network traffic follow heavy-tailed distributions 4
 Significant memory contention if packet are spread across cores /%@\

X In many programs, state update operations are too complex to be
implemented in transactional hardware (i.e., fetch-add-write)
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What are the existing approaches? #2: Sharding
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I What are the existing approaches? #2: Sharding
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What are the existing approaches? #2: Sharding

X Not always possible to avoid coordination through sharding

* There may be parts of the program state shared across packets (e.g., list of free ports in a
NAT)

Network %T,E:j‘“:é

Fl H1 )
oW ﬂ{ Function )

< ‘

f Network é‘ﬁé

T - Per-CPU Data
Asy G2 -‘ | Function

Structures

/
RSS\ N )

%_1 f Network é‘ﬁé

Function

Flow #3 |~

- J

12



What are the existing approaches? #2: Sharding

X Not always possible to avoid coordination through sharding

* There may be parts of the program state shared across packets (e.g., list of free ports in a
NAT)

X Today’s NIC RSS use a limited number of packet’s header fields to steer packets

Network %‘ﬁ%

ADH L |y ﬂ{ Function )

Per-CPU Data
Structures

q Sk
Flow #2 r‘ =4k Nl

Function
L J
RSS \

\\\_] f Network a‘ﬁg

Flow #3 |~ .
Function

- J

12




What are the existing approaches? #2: Sharding

X Not always possible to avoid coordination through sharding
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What are the existing approaches? #2: Sharding

X Not always possible to avoid coordination through sharding
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State Compute Replication (SRC):
Scaling Single, Stateful Flows across multiple cores
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Scaling Single, Stateful Flows across multiple cores
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How does this work? — Running Example

* Port knocking firewall

* If a source transmits IPv4/TCP packets with the correct sequence of TCP
destination ports, all further communication is permitted
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How does this work? — Running Example

* Port knocking firewall
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State Compute Replication (SRC):
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State Compute Replication (SRC):
Scaling Single, Stateful Flows across multiple cores

* Packets can be perfectly sprayed across all the cores (or a set of cores)
* Every core will have its own state without sharing between the cores
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State Compute Replication (SRC):
Scaling Single, Stateful Flows across multiple cores

* Packets can be perfectly sprayed across all the cores (or a set of cores)
* Every core will have its own state without sharing between the cores
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How does this work? — Running Example

* Port knocking firewall
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How does this work? — Running Example

* In general, every packet has:
* Currentpkt +) md(N — 1)
e Where N is the number of cores
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I Operationalizing SCR: SCR-Aware Programming

struct hdr* eth = pkt_start;
int 13proto = eth->proto;
int off = sizeof(struct e dr);

struct iphdr* iph = pkt_start + off;
int l4proto = iph->protocol;
® if (13proto != IPv4 || l4proto != TCP)

int 13proto, l4proto, srcip, dport, i, j; return XDP_DROP;

for (j = 0; j < NUM_META; j++) { int srcip = iph->src;
i = (index + j) % NUM_META; off += sizeof(struct )5
struct *pkt = data + 1 * sizeof(meta); struct dr* tcp = pkt_start + off;

13proto pkt->13proto; : - e c
l4proto = pkt->l4proto; ULike fo el EeBLadRoGE;

srcip = pkt->srcip;

dport = pkt->dport; ; )

if (13proto != IPv4 || l4proto != TCP) int state = map_lookup(states, srcip);
continue; int new_state = get_new_state(state, dport);

map_update(states, srcip, new_state);

h :
if (new_state == OPEN)
pkt_start = data + return XDP_TX;
NUM_META * sizeof(struct

+ sizeof(index); return XDP_DROP;
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I Operationalizing SCR: SCR-Aware Programming

* Define per-core state data structures and ©
per-packet metadata structures. e —
int 13proto = eth—>proto; :

* Fast-forward the state machine using the [y eitaheu Nt
packet history.
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Experimental Results - Throughput

* We tested SCR on a set of eBPF/XDP applications, using realistic traffic
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Why does SCR scales better than the other techniques?
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Why does SCR scales better than the other techniques?

Consistent high IPC with more cores,
because of metadata history processing

L2 hit ratio: 8 cores IPC: 8 cores \ Latency: 8 cores
- - L
et haring (lock) @
g —e- SCR , snaring - C -¢- SCR

sharing (lock) | & —+- shardlng (RSS) LC>J’ - sharing (lock)

6L\ - sharding (RSS) 1. 9 —e - sharding (RSS)
520 -0 -4—-¢
\ I 1 o —e—e—e.e s

10 20 30 5 10 15 20 25 30 35
TX rate (Mpps) TX rate (Mpps) TX rate (Mpps)

High variation,

Lock and. cache line indicating imbalance
contention across of CPU work

cores 25



All that glitters is not gold - SCR limitations

1. If the compute latency increases in comparison to the dispatch latency,
the effectiveness of SCR’s multi-core scaling reduces

e Every core has to do “more work” to catch up with the state
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All that glisters is not gold! SCR limitations

2. SCR’s attachment of histories to packets incurs non-negligible overheads

After 11 cores, the

CPU is no longer the token bucket policer
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Handling Packet Loss
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Handling Packet Loss

* Packets can be lost either
* (1) prior to the sequencer
* (2) after the sequencer but prior to processing at a CPU core
 (3) after processing at a core.
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Handling Packet Loss

* The only one that represents a problem is (2)

* Only in the case where the sequence is deployed on a top-of-the-rack
switch

* We can run link-level flow control mechanism like PFC to prevent packet loss
between the switch and server cores.
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Handling Packet Loss - Solution

* A core can either read the full flow state from a more up-to-date core

e ...0r it can read the packet history from either the sequencer or a log
written by a more up-to-date core

* To achieve this, we:
1. Have the sequence attach an incrementing sequence number to each packet
2. Use a per-core, lockless, single-writer multiple-reader log

3. Introduce an algorithm to catch up the flow state on each core upon detection
of loss
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Conclusions

» State Compute Replication (SCR) is a principle that enables scaling
stateful packet processing programs across multiple cores

* It leverages a packet history sequencer to collect the history of the
packets and propagate it to CPU cores
 Canrunon a NIC or TOR switch

* Applications using SCR need to be modified to replicate the program state
and keep private copies per core

* A compiler can do it automatically!

* Our experiment show that SCR can scale total packet processing
throughput linearly with cores, deterministically and independent of
flow size distribution
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