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*a CPU core that is struggling to cope with 
the increasing speed of networking
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• There have been significant efforts to speed up packet processing through
• Better stack design
• Removing user-kernel crossings
• Running software at lower layers of the stack
• Design better host interconnects

How to speed up software packet processing?

7



This talk: Scaling Packet Processing using multiple cores

• We present a principle that enables scaling a single, stateful packet 
processing programs across multiple cores
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Flows in realistic network traffic follow heavy-tailed distributions
• Significant memory contention if packet are spread across cores

In many programs, state update operations are too complex to be 
implemented in transactional hardware (i.e., fetch-add-write)

Port knocking firewall
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State Compute Replication (SRC): 
Scaling Single, Stateful Flows across multiple cores
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Throughput scales linearly, 
deterministically and 

independently from flow 
size distribution
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Idea #1: Replication for correctness

Send every packet reliably to every core, 
and replicate the state and computation on 

every core
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• Packets can be perfectly sprayed across all the cores (or a set of cores)
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Idea #2: State Compute Replication

Piggyback a bounded recent packet history 
on each packet sent to a core

to use replication (#1)
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• Define per-core state data structures and 
per-packet metadata structures.

• Fast-forward the state machine using the 
packet history.
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Experimental Results - Throughput

• We tested SCR on a set of eBPF/XDP applications, using realistic traffic 
traces (CAIDA, University DC)

DDoS Mitigator Port-knocking firewall Token bucket policer
SCR is the only scaling technique that can 

scale the throughput of all the stateful 
packet-processing programs we evaluated 

across multiple cores, regardless of the flow 
size distribution.
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because of metadata history processing
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All that glitters is not gold - SCR limitations
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1. If the compute latency increases in comparison to the dispatch latency, 
the effectiveness of SCR’s multi-core scaling reduces
• Every core has to do “more work” to catch up with the state
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2. SCR’s attachment of histories to packets incurs non-negligible overheads

• Can increase L3 cache pressure due to 
higher DDIO cache occupancy

• Increases PCIe transactions and 
bandwidth

• When packet history is appended outside 
the NIC (e.g., TOR switch), SCR may 
saturate the NIC earlier than other 
approaches

After 11 cores, the 
CPU is no longer the 
bottleneck for SCR

token bucket policer
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Handling Packet Loss

• Packets can be lost either 
• (1) prior to the sequencer
• (2) after the sequencer but prior to processing at a CPU core
• (3) after processing at a core.
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• The only one that represents a problem is (2)
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Handling Packet Loss

• The only one that represents a problem is (2)
• Only in the case where the sequence is deployed on a top-of-the-rack 

switch
• We can run link-level flow control mechanism like PFC to prevent packet loss 

between the switch and server cores.

2991

Sequencer

f(pi), f(pi+1), f(pi+2)

f(pi-2), f(pi-1), pi

f(pi-1), f(pi), pi+1

f(pi), f(pi+1), pi+2

Core 1 Si-3
Pa

ck
et

s

Core 2 Si-2

Core 3 Si-1

Programmable 
TOR switch



Handling Packet Loss - Solution

30



Handling Packet Loss - Solution

• A core can either read the full flow state from a more up-to-date core

30



Handling Packet Loss - Solution

• A core can either read the full flow state from a more up-to-date core
• …or it can read the packet history from either the sequencer or a log 

written by a more up-to-date core

30



Handling Packet Loss - Solution

• A core can either read the full flow state from a more up-to-date core
• …or it can read the packet history from either the sequencer or a log 

written by a more up-to-date core

• To achieve this, we:
1. Have the sequence attach an incrementing sequence number to each packet
2. Use a per-core, lockless, single-writer multiple-reader log
3. Introduce an algorithm to catch up the flow state on each core upon detection 

of loss
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Conclusions

• State Compute Replication (SCR) is a principle that enables scaling 
stateful packet processing programs across multiple cores

• It leverages a packet history sequencer to collect the history of the 
packets and propagate it to CPU cores

• Can run on a NIC or TOR switch

• Applications using SCR need to be modified to replicate the program state 
and keep private copies per core

• A compiler can do it automatically!

• Our experiment show that SCR can scale total packet processing 
throughput linearly with cores, deterministically and independent of 
flow size distribution
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