
Designing transport-level encryption
for datacenter networks

Michio Honda
University of Edinburgh

On behalf of my research group members.

The role of datacenter transport today
● Apps want all of high throughput, low latency & many CPU cycles
● Datacenter transports need good

○ End-to-end congestion control
○ Host stack
○ Switch service

● Multi tenancy
● Multi-vendor hardware/software network components

Datacenters need end-to-end encryption

Datacenter transport requirements

• Modern transport requirements are complex
▪ Radically new transport beyond TCP

o 0-RTT data, receiver-driven congestion control, message boundaries
▪ Hardware offload

o Leaving CPU cycles to the apps
▪ In-network compute

o Load balancing, congestion signaling and routing

Can we design secure datacenter transport without
sacrificing those properties?

● TCP/QUIC
● Head of Line Blocking

○ Early-arriving small messages should
be delivered first

Limitation with bytestream abstractions

Msg1Msg2
App

Msg1Msg2
App

On a packet loss

On a CPU hotspot

● Google/Intel Falcon, AWS Scalable Reliable Datagram (SRD)
● Unordered packet delivery is supported

○ NOT unordered message delivery

Problems with RDMA abstractions

Design space: Transport-level encryption
En

cr
yp

te
d

tr
an

sp
or

ts
M

es
sa

ge
 tr

an
sp

or
ts

Middleground: Unencrypted message-based transport

● Homa*
○ Active development in Linux
○ General to transform to other protocols like NDP

● MTP**
○ Similar to Homa
○ Introduction of in-network compute

■ Load balancing, multipath,
congestion signalling, data mutation

Middleground: Unencrypted message-based transport

* Ousterhout et al, ATC’21
** Stephens et al, HotNets’21

SDP Overview

SDP overview

● Transport-level encryption for datacenter networks
● Message level transport

○ In-network computing support
■ Even data mutation with key sharing

● Opportunistic NIC offload
○ Commodity NVIDIA CX6/7 NICs

● Transport protocol number agnostic
○ Co-existence with existing traffic

● Optional 0-RTT handshake

Msg-trans-
port

Encryption
management

IP

user
kernel

App

SDP

● ~2800 LoC change in Homa/Linux
● ~300 LoC change in the mlx5 driver
● Support Linux 6.2 and 6.6

● It works for non-TCP!

TLS offload with commodity NICs
● It is a deal breaker to be able to use existing HW offload
● Full TOE-based approach (Chelsio T6)

○ Bad even for TCP (e.g., options are gone) and unfavored by operators*

● Autonomous offload* (NVIDIA ConnectX-6/7)
○ Mainstream today
○ Likely similar architecture in Fungible (Microsoft) and Netronome NICs

IP hdr (proto != TCP)
“TCP” hdr

* Pismenny et al, ASPLOS’21

Encryption and TSO

enc. enc. enc.

Any-size, unordered authenticated message

● An app message can consist of multiple TSO segments
○ Example below: one app message over two TSO segments

● A TSO segment can consist of multiple packets

In-msg framing headers (FH)

Encryption
and TSO

IP hdr (proto != TCP)
“TCP” hdr
TLS hdr TLS auth

enc

enc

enc

enc

enc

encPackets

enc

IPID

encEncrypted
TSO segments

TLS Rec Seq

TSO segments

FH

App message

Receiver Sender

Message-level parallelism
● Granularity of parallelism

○ TCP (Connection-level) - strict in-order delivery

TCP

App Badly-designed SDP

(rec seq 2)

(rec seq 0)

(rec seq 1)

Result A:
Receiver decrypts record sequence 2 with
expecting record sequence 0 -> decrypt failure

Result B:
Receiver waits for record sequence 0 even other
records are received -> Head-of-line blocking

○ SDP (Message-level) - out-order delivery at message level
■ A later message can be received earlier
■ Global record sequence number (over TCP bytestream) no longer works

NIC offloading

● NICs expect all the data is serialized
○ Under socket lock for TCP

● Message-based transports send multiple messages in parallel in the same flow

intr syscall intr syscallsched

Flow ctx

Crypto

Driver

Socket

Crypto

SDP
TCPTransport
kTLS

Message-level parallelism
● Granularity of parallelism

○ TCP (Connection-level) - strict in-order delivery
○ SDP (Message-level) - out-order delivery at message level

■ A later message can be received earlier
■ Global record sequence number (over bytestreawm) no longer work

SDP Wire

App

Message 2
Message 1

Message 0

Message 0
Rec Seq 1

Message 1
Rec Seq 0

Solution Assign unique record sequence space to each message

Message 2
Rec Seq 0

Message 0
Rec Seq 0

Replay attack protection
● Intra-message: Record sequence numbers increment

sequentially like normal TLS
● Inter-Message: Unique message ID used only once in the

authenticated session
SDP Wire

App

Message 2
Message 1

Message 0

Message 0
Rec Seq 1

Message 1
Rec Seq 0

Message 2
Rec Seq 0

Message 0
Rec Seq 0

Unloaded latency
● SDP outperforms kTLS by 13–32% with hw offload and 10–35% without it

○ Homa is faster than TCP by 5–35 %

Redis throughput
● SDP outperforms kTLS by 5–13 % with TLS offload and 8–17 % without it

Workload A: Update heavy
Workload C: Read only

Summary

● We need security in datacenter networks
● Challenging to preserve important transport properties today:

○ NIC offloading
○ Departure from TCP
○ In-Network Computing support

while preserving the same threat model as TLS/TCP
● SDP solves it

○ Existing TLS NIC offload
○ Arbitrary-sized, encrypted message
○ Same threat model as TLS/TCP
○ Protocol number agnostic

