Towards Functional Verification
of eBPF Programs

Marios Kogias

IMPERIAL

eBPF

* eBPF (extended Berkeley Packet Filter)

* A lightweight virtual machine inside the Linux kernel

* Allows you to run programs in a "sandbox" in certain locations in the kernel

* You can safely and efficiently extend the capabilities of the kernel without
having to change the kernel.

« Adopted by the industry and used extensively in projects we use every day
Various usecases: monitoring, tracing, scheduling, packet processing and more...

* Probably the “hottest thing” happening in the kernel community at the
moment.

i

O :1:
Oa®

() m
cgeCl liv e

CLOUDFLARE

https://www.youtube.com/watch?v=Wb_vD3XZYOA

A
eBPF Program Life Cycle CIerHRuSt

Write your eBPF logic in your favourite
programing language LLVM toolchain
Compile through the LLVM tool chain

Load the program inside the kernel using

the bpf() system call -
An in-kernel verifier checks the code Object file

before execution to ensure: no invalid
memory accesses, bounded execution
Attach the program to a hook inside the
kernel and then the execution follows an bpf{()
event-driven paradigm

Kernel

Verifier

eBPF for Networking

« Different hooks inside the kernel:
- XDP: right after packets are received by the NIC and right before they enter the kernel network
stack. Available only for Rx
« TC: traffic shaping layer before the TCP layer
- Socket: after the TCP stack and before the application

* Hardware acceleration:
* ASICs running eBPF =
* eBPF softcores implemented in FPGAs
« Translating eBPF to FPGA circuits

!Axbryd, 2CN

eBPF & In-kernel Verifier

eBPF bytecode:

« Let's differentiate between eBPF bytecode and its verification process

10+1 registers ‘
ALU and memory operations

Access to maps .
Access to helper functions

Nothing special compared to other .

bytecodes, e.g. WASM or JVM

In-kernel verifier:

Ensures safety:

No loops, no out-of-bounds memory
access, program termination

Uses abstract interpretation to track
state across execution paths

Does not cover functional correctness

eBPF programs can still have logical bugs
but are guaranteed not to crash the kernel

& Users follow a trial-and-error iterative approach till the verifier is happy...

@ eBPF has indirectly enforced the use of formal methods to users without the

equivalent background

Key Insight

eBPF programs that satisfy the in-kernel verifier have certain properties
that make them amenable to further static analysis

Question: How can we use the above insight to improve the development and
deployment experience of eBPF programs?

Qutline

- DRACO: A tool on exhaustive symbolic execution for eBPF analysis

- Usecases:
Verifying functional correctness of individual programs
Ildentifying and securing program interactions
Enforcing stricter constrains than the in-kernel verifier for unprivileged eBPF

Draco Core Mechanism

Let's enumerate and explore all execution paths for any potential input.
This is a tractable problem given the verifier constraints.

What is Draco? I / (c

« Symbolic execution engine based on KLEE
« Symbolic models for helpers and data structures, e.g. a packet

4

* An extensible set of analyses around that infrastructure to reason about the
functionality of the eBPF program

Symbolic Execution 101

« Programs run on symbolic inputs int my_function(inta, int b) {
- Branches add constraints to the if(a>b){

symbolic values and fork the execution return 1 (@a>b)

to continue the exploration }else { I(a > b)
« When branching an SMT solver if(a<b){

determines whether a path is feasible return -1 I(a > b) && (a < b)

given the constraints }else {

return 0 I(a>b) && I(a < b)
« Usually not exhaustive }
Used for bug finding }

< Can suffer from path explosion }

- Not the case here given the verifier
constraints

Draco Big Picture 7 OPT Man

- Independent tool as part of the - Part of a generic eBPF control plane
development/deployment process

Control Plane

Draco

Kernel

s NetEdit: An Orchestration Platform for eBPF Network Functions
at Scale
Theophilus A. Benson' Prashanth Kannan* Prankur Gupta*
Balasubramanian Madhavan* Kumar Saurabh Arora* Jie Meng*
Martin Lau* Abhishek Dhamija* Rajiv Krishnamurthy*
Srikanth Sundaresan* Neil Spring* Ying Zhang*
*Carnegie Mellon University *Meta
ABSTRACT 1 INTRODUCTION
Managing the performance of thousands of services across mil- Optimizing i 10
tions of servers demands a networking stack that can dynamically tens o fln.l.h ons of requests across tens of thousands of services
j s o . s jonally
chara o " i < o cor ckle e uning

i»

Usecase 1: Functional Correctness

The verifier does not guarantee functional correctness!

Why do | care?

- eBPF is used in critical infrastructure, e.g. firewalls
- eBPF market places start appearing ElTHELTNUXEOUNDATION

« Al code generation is becoming more popular j’ L3AF

A o
There is a need for verifying the 1. Cop“()t

behaviour of eBPF programs!

11

How do | specify the correct behaviour? |

External specification

o Executable program written in C/C++/Rust that implements the same

functionality of the eBPF program either fully or partially
o Use the fact that KLEE operates at the LLVM IR level

o Written by the same or different developer than the one implementing the
eBPF program

For every execution path check that the (1) return value, (2) changes to the
network packet and (3) changes to the BPF maps are equal

Using Driver Program for External Specification

int main(int argc, charxx argv){
struct pkt xkpacket = create_packet(sizeof(struct pkt));
packet—>ether.h_proto = BE_ETH_P_IP;
packet->ipv4.protocol = IPPROTO_TCP;
struct xdp_md *xctx = create_ctx(packet, sizeof(struct pkt), 0);

BPF_MAP_INIT(&tx_port, "tx_devices_map", "', "tx_device");
BPF_MAP_INIT(&flow_ctx_table, "flowtable", "pkt.flow", "output_port");
functional_verify(xdp_fw_prog, xdp_fw_spec, ctx, sizeof(struct pkt), 0);

How do | specify the correct behaviour? Il

Integrated specification

« Temporal assertions inserted throughout the eBPF program

« Draco implements a library to help developers write integrated specifications

« Written by the same developer implementing the eBPF program

» Assertions checked either according to the program control flow or deferred,
i.e. when the program returns

14

Integrated Specification Examples

ethernet = data ;

BPF_ASSERT_CONSTANT (ethernet, sizeof(xethernet));

BPF_ASSERT_CONSTANT asserts a memory location
remains constant

15

EOP:

BPF_ASSERT_IF_ACTION_THEN_NEQ(XDP_DROP, &(ip->protocol), __u8, IPPROTO_TCP);

nh_off +=sizeof (xip);
if (data + nh_off > data_end) BPF_ASSERT_IF_ACTION_THEN_EQ
goto EOP; asserts that if an XDP action is returned

the given memory location must not be

if(ip->protocol != IPPROTO_TCP){ equal to the given value
goto EOP;

}

BPF_ASSERT RETURN(XDP_TX):; BPF_ASSERT_RETURN asserts that

the given XDP action must be returned

int key = ip->saddr;
int value = 1;
bpf_map_update_elem(&example_map, &key, &value, 0);

BPF_RETURN (XDP_TX) ;

BPF_RETURN(XDP_DROP) ;

Integrated Specification

Assertion

Description

ASSERT(bool)
ASSERT_RETURN(action)
ASSERT_CONSTANT(addr, len)

ASSERT _END_EQ(addr, type, x)

ASSERT _IF_ACTION_EQ(action, addr,

type, x)
ASSERT_END_EQ_ ADDR(addr_end,
addr_now, len)

bool holds (normal assert function)
Main function must return action
The contents at addr for 1en bytes are
the same when execution reaches the
assertion as when the main function
returns

The value at addr is x when the main
function returns

Same as above but only when the return
value of the main function is action
The contents at addr_now when execu-
tion reaches the assertion are the same
as the contents at addr_end when the
main function returns for len bytes

Evaluation

Program | LOC | Type | Context | Spec | Paths
hXDP FW | 686 Full 2 27 64
hXDP FW | 686 Full 12 18 4

Fluvia 156 | Partial 0 4 23
Katran 4244 | Partial 0 17 10
CRAB 365 | Assert 16 20 5

Usecase 2: Verifying Program Interactions

« Verifying the correctness of a single eBPF program might not be enough

« eBPF programs interact with:

* Other eBPF programs as part of a chain
« Userspace application through eBPF maps

« Why do |l care?
« Identify eBPF programs that interfere, hence their ordering matters
* |dentify map dependencies to avoid faulty control plane updates
« Identify map constraints to avoid faulty paths

Draco can also help reason about the eBPF program interactions

19

Ordering Example

External
Packet

NAT

External
Address

Firewall

\ 4

20

Ordering Example

NAT
Firewall

External N External
Packet Address

Draco will detect that the two programs have a RAW dependency

21

Dependent Maps Example

flow_leaf = bpf_map_lookup elem(&flow_ctx_table, &flow_key);
if (flow_leaf)
return bpf_redirect_map(&tx_port, flow_leaf->out_port, 0);

* Access to the redirect map depends on the flow_ctx_table map
« The control plane should update them together and in the correct order

Draco will detect that the two map accesses are dependent

22

Map Content Constraints

flow_leaf = bpf_map_lookup elem(&flow_ctx_table, &flow_key);
if (flow_leaf)
BPF_ASSERT(flow_leaf->out_port < 5);

« The data plane code can encode map constraints

« Wrong map contents can lead control flow to faulty paths indicated by
assertions

Draco can identify map accesses and their constraints that led to failed executions

23

Mechanisms & Implementation

- Extend KLEE to track the read and write set for packet memory addresses
and maps for each execution path

- Extend KLEE to track correlated map accesses, i.e. the key used to access
a map is derived from a previous map access

- Extend KLEE to track branches dependent on maps

* Introduce a program separator (__separate()) to avoid over-approximating
the ordering analysis

24

Usecase 3: Enforcing stricter constraints

« Root or CAP_BPF required to load an eBPF program
« Very coarse-grained access control (binary)

- @Goal: Use Draco as part of a privileged control plane to enforce policies
on what eBPF programs can and cannot do

. Example policies:
Restrict access to maps/helper functions
Prevent/only allow access to certain types of packets
Prevent/only allow RW access to certain parts of the packet
Prevent/only allow access certain actions, e.g. prevent dropping packets
Further constraint eBPF program size

Draco can enable eBPF multi-tenancy and an eBPF-as-a-Service model

26

Current Status

 Initial PoC presented at the eBPF
workshop at SIGCOMM 2024 covering
the first two usecases

« Currently working on the 3" usecase
and the control plane integration

 Initial opensource version

https://github.com/draco-verifier

Towards Functional Verification of eBPF Programs

Dana Lu* Boxuan Tang"
Imperial College London Imperial College London
ABSTRACT

eBPF is being used to implement increasingly critical pieces of
system logic. éBPF's verifier raises the cost of adoption of the tech-
nology, as making programs pass the verifier can be very effortful.
‘We observe that the guarantees provided by the verifier have only
been used for the narrow objective of verifying these programs’
safety, despite them also enabling the automatic verification of pro-
gram functional correctness. We envision a framework allowing
developers to easily specify and automatically verify their eBPF
programs with very little extra cost compared to simply passing
the verifier.

We showcase our implementation of DRACO, built on top of
KLEE. DRACO allows developers to fully or partially specify eBPF
programs, add verification-time assert statements, and reason about
multiple eBPF programs interacting with each other and userspace,
all at minimal additional cost to the developers. We use DRACO to
cither fully or partially verify the correctness of several real-world
or experimental XDP programs.

CCS CONCEPTS

. and its engi ing — i ity;

KEYWORDS

Functional verification; eBPF; Symbolic execution

ACM Reference Format:

Dana Lu, Boxuan Tang, Michael Paper, and Marios Kogias. 2024. Towards
Functional Verification of eBPF Programs. In Workshop on eBPF and Kernel
Extensions (eBPF '24), August 4-8, 2024, Sydney, NSW, Australia. ACM, New
York, NY, USA, 7 pages. https://doi.org/10.1145/3672197.3673435

1 INTRODUCTION

€BPF programs are being deployed for an increasing amount and
diversity of use cases. Firewalls [1], congestion control algorithms
[14], load balancers [16] and task scheduling policies [9, 17] are
now being defined in eBPF. For all these scenarios, eBPF's strict
verifier acts as a gatekeeper to prevent poorly written programs
from harming the kernel. Convincing the verifier of the safety of
a program is a time-consuming task, but éBPF’s success relies on
the observation that this task is not a waste of time. Rather, eBPF
enables the faster deployment of more secure and efficient systems.

However, it is important to differentiate eBPF from its verifica-
tion process. At its core, eBPF is just an ISA for a bytecode which

“These authors made equal contributions.

Michael Paper
Imperial College London

Marios Kogias
Imperial College London

could define arbitrary programs and can be used outside the kernel
context, e.g. in userspace [6] or microcontrollers [11]. eBPF’s kernel
verifier splits the eBPF programs into two broad categories: those
that it considers safe, and all other programs. All of the programs
from the first category satisfy strong memory safety properties and
are free of unbounded loops.

The kernel verifier, though, is not a panacea. Just because a
program is safe to execute in kernel mode does not mean that it is
functionally correct and cannot harm the system. For instance, a
safe but ill-formed scheduling policy could drop some tasks, and a
firewall could drop, by mistake, valid packets required and expected
by an application.

Given eBPF's wide adoption by superscalars [18], especially in
critical tasks such as firewalls and security analysis, the appearance
of eBPF marketplaces [12] with unknown and potentially malicious
€BPF programs, and the emerging LLM-based code generation [13],
which can be used to write eBPF programs, we need a robust way
to reason about the of eBPF prog; Al-
though standard software engineering methods, such as extensive
testing and progressive deployment can partially play this role, we
believe that eBPF as a new technology requires and can enable
much better tooling specially tailored to its characteristics.

The main insight of this paper is that the set of eBPF programs
that already successfully pass the in-kernel verifier are amenable to
further automated analysis, which can guarantee their partial or full
functional correctness. Such an analysis has the potential to provide
stronger guarantees than unit testing at a lower development cost.

In this paper, we present DRACO !, an extensible tool that tar-
gets eBPF programs that passed the in-kernel verifier to provide
guarantees about the program itself, through a full or a partial
specification, and its interaction with the rest of the system, i.e.
other eBPF programs and userspace. Based on the previous insight,
DRACO uses exhaustive symbolic execution to reason about eBPF
programs that are guaranteed to terminate, given that the in-kernel
verifier has already accepted the programs under analysis.

We implement DRACO by extending KLEE [2], a widely used
symbolic execution engine, and as a first step use it to verify ei-
ther fully or partially certain properties of various real-world and
research XDP programs, such as Katran [16], hXDP FW [1], Flu-
via [20) and CRAB [4).

2 BACKGROUND

Kernel Verifier: Because eBPF programs are executed in kernel
mode, the kernel must ensure they will be efficiently executed and

https://github.com/draco-verifier

Takeaways
- eBPF is gaining popularity in writing network functions
* The in-kernel verifier forces developers to write verifiable code

* Draco leverages this insight to reason about eBPF programs using
exhaustive symbolic execution and an extensible set of analysis

Thank you

m.kogias @imperial.ac.uk
https://marioskogias.github.io/

28

mailto:m.kogias@imperial.ac.uk
https://marioskogias.github.io/

	Slide 1: Towards Functional Verification of eBPF Programs
	Slide 2: eBPF
	Slide 3: eBPF Program Life Cycle
	Slide 4: eBPF for Networking
	Slide 5: eBPF & In-kernel Verifier
	Slide 6: Key Insight
	Slide 7: Outline
	Slide 8: Draco Core Mechanism
	Slide 9: Symbolic Execution 101
	Slide 10: Draco Big Picture
	Slide 11: Usecase 1: Functional Correctness
	Slide 12: How do I specify the correct behaviour? I
	Slide 13: Using Driver Program for External Specification
	Slide 14: How do I specify the correct behaviour? II
	Slide 15: Integrated Specification Examples
	Slide 16
	Slide 17: Integrated Specification
	Slide 18: Evaluation
	Slide 19: Usecase 2: Verifying Program Interactions
	Slide 20: Ordering Example
	Slide 21: Ordering Example
	Slide 22: Dependent Maps Example
	Slide 23: Map Content Constraints
	Slide 24: Mechanisms & Implementation
	Slide 25: The need for __separate()
	Slide 26: Usecase 3: Enforcing stricter constraints
	Slide 27: Current Status
	Slide 28: Takeaways

