
Towards Functional Verification
of eBPF Programs

Marios Kogias

1

eBPF

• eBPF (extended Berkeley Packet Filter)
• A lightweight virtual machine inside the Linux kernel
• Allows you to run programs in a "sandbox" in certain locations in the kernel
• You can safely and efficiently extend the capabilities of the kernel without

having to change the kernel.
• Adopted by the industry and used extensively in projects we use every day

• Various usecases: monitoring, tracing, scheduling, packet processing and more…
• Probably the “hottest thing” happening in the kernel community at the

moment.

https://www.youtube.com/watch?v=Wb_vD3XZYOA

eBPF Program Life Cycle

• Write your eBPF logic in your favourite
programing language

• Compile through the LLVM tool chain
• Load the program inside the kernel using

the bpf() system call
• An in-kernel verifier checks the code

before execution to ensure: no invalid
memory accesses, bounded execution

• Attach the program to a hook inside the
kernel and then the execution follows an
event-driven paradigm

3

LLVM toolchain

Kernel

User

C/C++/Rust…

Object file

bpf()

Verifier

eBPF for Networking

• Different hooks inside the kernel:
• XDP: right after packets are received by the NIC and right before they enter the kernel network

stack. Available only for Rx
• TC: traffic shaping layer before the TCP layer
• Socket: after the TCP stack and before the application

• Hardware acceleration:
• ASICs running eBPF
• eBPF softcores implemented in FPGAs
• Translating eBPF to FPGA circuits

4

Netronome Agilio

eBPF is becoming a popular way to describe packet processing
pipelines across different platforms. So, it is worth paying attention to it

eBPF & In-kernel Verifier

• Let’s differentiate between eBPF bytecode and its verification process

5

eBPF bytecode:
• 10+1 registers
• ALU and memory operations
• Access to maps
• Access to helper functions
• Nothing special compared to other

bytecodes, e.g. WASM or JVM

In-kernel verifier:
• Ensures safety:

• No loops, no out-of-bounds memory
access, program termination

• Uses abstract interpretation to track
state across execution paths

• Does not cover functional correctness
• eBPF programs can still have logical bugs

but are guaranteed not to crash the kernel

Users follow a trial-and-error iterative approach till the verifier is happy…

eBPF has indirectly enforced the use of formal methods to users without the
equivalent background

Key Insight

Question: How can we use the above insight to improve the development and
deployment experience of eBPF programs?

6

eBPF programs that satisfy the in-kernel verifier have certain properties
that make them amenable to further static analysis

Outline

• DRACO: A tool on exhaustive symbolic execution for eBPF analysis

• Usecases:
• Verifying functional correctness of individual programs
• Identifying and securing program interactions
• Enforcing stricter constrains than the in-kernel verifier for unprivileged eBPF

7

Draco Core Mechanism

What is Draco?

• Symbolic execution engine based on KLEE
• Symbolic models for helpers and data structures, e.g. a packet

• An extensible set of analyses around that infrastructure to reason about the
functionality of the eBPF program

8

Let’s enumerate and explore all execution paths for any potential input.
This is a tractable problem given the verifier constraints.

Symbolic Execution 101

• Programs run on symbolic inputs
• Branches add constraints to the

symbolic values and fork the execution
to continue the exploration

• When branching an SMT solver
determines whether a path is feasible
given the constraints

• Usually not exhaustive
• Used for bug finding

• Can suffer from path explosion
• Not the case here given the verifier

constraints

int my_function(int a, int b) {
if (a > b) {
return 1

} else {
if (a < b) {
return -1

} else {
return 0

}
}

}

9

(a > b)

!(a > b)

!(a > b) && (a < b)

!(a > b) && !(a < b)

Draco Big Picture

• Independent tool as part of the
development/deployment process

• Part of a generic eBPF control plane

10

Draco

Kernel

User Control PlaneUnprivileged
Process Draco

Usecase 1: Functional Correctness

The verifier does not guarantee functional correctness!

Why do I care?
• eBPF is used in critical infrastructure, e.g. firewalls
• eBPF market places start appearing
• AI code generation is becoming more popular

11

There is a need for verifying the
behaviour of eBPF programs!

How do I specify the correct behaviour? I

External specification

● Executable program written in C/C++/Rust that implements the same
functionality of the eBPF program either fully or partially
○ Use the fact that KLEE operates at the LLVM IR level

● Written by the same or different developer than the one implementing the
eBPF program

12

For every execution path check that the (1) return value, (2) changes to the
network packet and (3) changes to the BPF maps are equal

Using Driver Program for External Specification

How do I specify the correct behaviour? II

Integrated specification

• Temporal assertions inserted throughout the eBPF program
• Draco implements a library to help developers write integrated specifications
• Written by the same developer implementing the eBPF program
• Assertions checked either according to the program control flow or deferred,

i.e. when the program returns

14

Integrated Specification Examples

15

BPF_ASSERT_CONSTANT asserts a memory location
remains constant

16

BPF_ASSERT_IF_ACTION_THEN_EQ
asserts that if an XDP action is returned
the given memory location must not be

equal to the given value

BPF_ASSERT_RETURN asserts that
the given XDP action must be returned

Integrated Specification

Evaluation

Usecase 2: Verifying Program Interactions

• Verifying the correctness of a single eBPF program might not be enough
• eBPF programs interact with:

• Other eBPF programs as part of a chain
• Userspace application through eBPF maps

• Why do I care?
• Identify eBPF programs that interfere, hence their ordering matters
• Identify map dependencies to avoid faulty control plane updates
• Identify map constraints to avoid faulty paths

19

Draco can also help reason about the eBPF program interactions

Firewall
NAT

Internal
Address

External
Address

Blacklist on
Internal

Addresses

External
Packet

20

Ordering Example

Firewall
NAT

Internal
Address

External
Address

Blacklist on
Internal

Addresses

External
Packet

21

Ordering Example

Draco will detect that the two programs have a RAW dependency

Dependent Maps Example

• Access to the redirect map depends on the flow_ctx_table map
• The control plane should update them together and in the correct order

22

flow_leaf = bpf_map_lookup_elem(&flow_ctx_table, &flow_key);
if (flow_leaf)
return bpf_redirect_map(&tx_port, flow_leaf->out_port, 0);

Draco will detect that the two map accesses are dependent

Map Content Constraints

• The data plane code can encode map constraints
• Wrong map contents can lead control flow to faulty paths indicated by

assertions

23

flow_leaf = bpf_map_lookup_elem(&flow_ctx_table, &flow_key);
if (flow_leaf)
BPF_ASSERT(flow_leaf->out_port < 5);

Draco can identify map accesses and their constraints that led to failed executions

Mechanisms & Implementation

• Extend KLEE to track the read and write set for packet memory addresses
and maps for each execution path

• Extend KLEE to track correlated map accesses, i.e. the key used to access
a map is derived from a previous map access

• Extend KLEE to track branches dependent on maps
• Introduce a program separator (__separate()) to avoid over-approximating

the ordering analysis

24

Usecase 3: Enforcing stricter constraints

• Root or CAP_BPF required to load an eBPF program
• Very coarse-grained access control (binary)

• Goal: Use Draco as part of a privileged control plane to enforce policies
on what eBPF programs can and cannot do

• Example policies:
• Restrict access to maps/helper functions
• Prevent/only allow access to certain types of packets
• Prevent/only allow RW access to certain parts of the packet
• Prevent/only allow access certain actions, e.g. prevent dropping packets
• Further constraint eBPF program size

26

Draco can enable eBPF multi-tenancy and an eBPF-as-a-Service model

https://github.com/draco-verifier

Current Status

• Initial PoC presented at the eBPF
workshop at SIGCOMM 2024 covering
the first two usecases

• Currently working on the 3rd usecase
and the control plane integration

• Initial opensource version

27

https://github.com/draco-verifier

Takeaways

• eBPF is gaining popularity in writing network functions

• The in-kernel verifier forces developers to write verifiable code

• Draco leverages this insight to reason about eBPF programs using
exhaustive symbolic execution and an extensible set of analysis

28

Thank you
m.kogias@imperial.ac.uk
https://marioskogias.github.io/

mailto:m.kogias@imperial.ac.uk
https://marioskogias.github.io/

	Slide 1: Towards Functional Verification of eBPF Programs
	Slide 2: eBPF
	Slide 3: eBPF Program Life Cycle
	Slide 4: eBPF for Networking
	Slide 5: eBPF & In-kernel Verifier
	Slide 6: Key Insight
	Slide 7: Outline
	Slide 8: Draco Core Mechanism
	Slide 9: Symbolic Execution 101
	Slide 10: Draco Big Picture
	Slide 11: Usecase 1: Functional Correctness
	Slide 12: How do I specify the correct behaviour? I
	Slide 13: Using Driver Program for External Specification
	Slide 14: How do I specify the correct behaviour? II
	Slide 15: Integrated Specification Examples
	Slide 16
	Slide 17: Integrated Specification
	Slide 18: Evaluation
	Slide 19: Usecase 2: Verifying Program Interactions
	Slide 20: Ordering Example
	Slide 21: Ordering Example
	Slide 22: Dependent Maps Example
	Slide 23: Map Content Constraints
	Slide 24: Mechanisms & Implementation
	Slide 25: The need for __separate()
	Slide 26: Usecase 3: Enforcing stricter constraints
	Slide 27: Current Status
	Slide 28: Takeaways

