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Or… the Data Uncertainty Principle
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Measurements are important

• Analyze a system

• Perform predictions

• Evaluate performance

• Detect anomalies

• Optimize resource usage

• …

Any analysis is as good as the experimental observations
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In physics, at very low level

• Fundamental limit of measurement accuracy of natural systems

• Complementary variables, Heisenberg inequality -> native 
property

• Inherent to all wave-like systems
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In physics, the observer effect

• A measured system is altered by the measurement itself

• It can be mitigated by technology or differential measurements

• Inherent to all macroscopic systems -> behavioral alteration

• Does not set a fundamental limit of the measurement that can be 
done
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In networking

• Traffic measurements 

• Monitoring performed directly 
on network devices

• Active or passive

• Direct or indirect

• With or without mirroring

• Deep (per-packet) or sampling (poisson, uniform)

• Use cases: anomaly detection, resource allocation, performance 
enhancement

SUT

IN Out
Mirror

Measurement
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In software networking
• Same as before, but all calculations are performed by one (or 

more) CPU(s)
• All « functions » are implemented as pieces of code… see the 

problem?

Bonus: open the 
white-box!

Fine-grained  data 
previously not 
accessible
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The IONOS project

• Measurement problem in high-speed software network: uncertainty/observer effects

• Exploratory project: 

• Limits of the uncertainty principle

• Design of non-invasive measurement techniques

AGENDA

• High-speed software networks, COTS hardware and ML-enhanced functions

• Methodology: inference of VNF state using indirect non-invasive measurements

• Use cases and early results



Network 
softwarization

Part I
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Topology tightly coupled with 
geography

Functionality 

tightly coupled 

with size

Maintenance tightly coupled with human 
interaction

Evolution of network systems
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Virtualization of devices, 
services, topologies, ...

Miniaturization of 
network devices with 
same functionality Automation and reduction of human 

intervention

• Virtualization: Hardware/software disaggregation

• NFV/SDN: Component/Function decoupling

• Automation : human/machine separation of tasks

Towards a steady softwarization of networks
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Replacing middleboxes with SW equivalents 

HW
Black
Boxpkt-in              pkt-out

General-
purpose HW

OS

Network 
application

Other 
application

s

Acceleration techniques: reducing the HW/SW gap and provide high-
speed

Software-based networking 
tradeoff
HW performance vs SW flexibility
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Sample function: software routing (L2/L3 forwarding)

Wire + 
transceiver

NIC

Commodity 
server
(multicore)

SW router

Multi 10-Gbit per second packet 
processing capabilities

Program

While(true):
  batch = get_pkts(NIC)
  if (size(batch) > 0):
    do_processing(batch)
   continue

Assembler (ASM)

get_pkts:
INSTR_1
INSTR_2
…
INSTR_n

do_processing:
INSTR_1
…
INSTR_m

SW router
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Keeping up with speed: software acceleration techniques
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Acceleration technique: batching and polling

Software router

Batch arrival Batch processing Batch departure

Packet-processing:
● no individual packet arrivals
● per-batch processing
● no individual packet departure
● CPU usage is optimized

I/
O 

Co
mp
ut
e

I/
O 

Polling
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Acceleration technique: memory management

Pointer

App data

Pointer

App data

Hugepages
● Limiting page faults
Mempool
● Avoid run-time malloc

RAM

4k 4k 4k 4k

4k 4k 4k 4k

4k 4k 4k 4k

4k 4k 4k 4k

RAM

2G

Pointer

Mempool

Payload
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Traffic NIC VNF (CPU + Memory) NIC

P

P

RSS Compute
batch

Polling

MEM

MEM

Processing

Batching 
again

Branch 

predictors

Branch 

predictors

Prefetch

Prefetch

I/O
batch

A simple model of a SW router
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The measurement problem
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How to collect network data

CPU

ASM
Pipeline stages ALUs

t

Clock 
signal

Caches

INS_1

INS_2

INS_3

INS_1

INS_2

INS_3

INS_1

INS_2

INS_3

INS_1

INS_2

INS_3

INS_1

INS_2

INS_3
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CPU

ASM
Pipeline stages ALUs

t

Clock 
signal

Caches

INS_1

INS_2

INS_3

INS_1

INS_2

INS_3

INS_1

INS_2

INS_3

INS_1

INS_2

INS_3

INS_1

INS_2

INS_3

Measurement operation will inevitably 
alter the state of the system.

More data → 
more altering

Complex analysis 
→ more altering

(Clock cycles 
used for 
measurement)

How to collect network data
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High-speed ML-enhanced functions on COTS servers

ML

COTS Server

Users

Service
Service

Service
Services

Infrastructure

In Out…
CPUs

Data path

Note: accessing external devices 
for ML processing may not be 
possible

Server

VNF
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How to do measurements
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• Pre-input (Data collector)

• Input NIC level (mirror, inspection)

• VNF level (pure software)

• CPU level (system level)

• Output NIC level (source demux)

• Post-output (Data collector)

In general: what should we do?

How to do measurements

VNF ML

In Out…
CPUs

Server

Measurement system

… …
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The main tradeoffs 



MethodologyPart II
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Key idea : use indirect measurements…

CPU
CPU

CPU

Low-level entities High-level entities

Easy to Monitor
Hard to Interpret
Data availability: Huge

Hard to Monitor
Easy to Interpret
Data availability: Low-to-medium

ML techniques

VNF

Get data from the bottom, 
analyze from the top

e.g., perf, intel PCM
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VNF

CPU
CPU

CPU

SW router
SW router

SW router

Low-level features

Normalized value in [0,1]
tim

e

… to infer what is the high-level system state !
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First half: low load

Second half: high load

Different features correlates
to different behavior

Are low-level features good predictors ?
(Yes, [ConextStu2019] ) 
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Our methodology

• Sample application: detect VNF traffic/state anomalies with CPU measurements

• Precollect several CPU measurements and train very simple ML models

• Deploy the trained model in the data path (for instance, within the orchestrator)

• Access online CPU measurements to verify the current state 
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NOT everything

Figure from [TMA2019]
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NOT everywhere

• Outside conditions affect the inner system

• Inner system affects the output

• CPUs already collect measurements

• May be the best place

• But cannot be done in real time

• Pure software collection has low performance

• But external monitoring has costs

VNF ML

In Out…
CPUs

Server

Measurement system

… …
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NOT all at once

• Pre-trained multilayer perceptron written in pure C and executed in pure SW

• 4 hidden layers, 10 neurons per layer

• The data structure used to store and run the model has an impact

*To be published. 
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What about prediction performance

• Expected traffic VS predicted traffic

• At high-rates the model struggles -> performance/accuracy tradeoff

Time series [s]
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[M
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Figure from
[INFOCOM2024]
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In a nutshell
• Measurements in software components can alter the state of the system

– Offline measurements : difficult to react to current conditions

– Online measurements : difficult to collect data at runtime

• Analysis may require a large amount of data

– Complex analysis → complex data → complex interactions

• The measurement problem must be mitigated

– Less measurements → lose accuracy in predictions

– More measurements → lose speed and alter the analysis

– Pre-collected measurements → no reaction to real-time changes

– Indirect measurements : correlate different types of measurements
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Takeaways and future plan

• High-speed software networks come as a high-cost / high-gain problem :

- lots of collectible data, but collection alters the system to be measured

• Study the fundamental limits of software measurements

• Propose new methodologies for network managers, operators and users

• Key ideas: (i) indirect measurements, (ii) simplify the input space, (iii) distribute the 
knowledge sources

• ANR-funded for 4 years

• 1 Ph.D. student June 2023

• 3 Internship positions + 1 Post-doc TBA

• Collaborations with other institutions in both academia and industry
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Inferring the system load via indirect measurements

A typical scenario

- Server owner
    Rents her resources to Clients
    Clients deploy their VNFs

- VNFs are linked to provide Services 
(APPs) using the low-level resources 
(NICs, CPU, RAM)

- Server cannot access the VNFs or the 
Services
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Exploit the different expressiveness

CPU
CPU

CPU

Low-level entities High-level entities

Easy to Monitor
Hard to Interpret
Data availability: Huge

Hard to Monitor
Easy to Interpret
Data availability: Low-to-medium

APIs

VNF

Get data from the bottom, 
analyze from the top
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1) Adapt CPU utilization w.r.t. load

Analyze the CPU data (number of instructions, number of branches, … ) to detect 
the Input traffic load and adapt the resource allocation
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2) Detect different load/configuration conditions

Analyze the CPU fingerprint and infer what is the possible underlying processing

Normalized value, measured by perf command, measured in units of standard deviations 
from the global average

(a) Poisson traffic at 3.5 Gbps with 256B packets; (b) Poisson traffic at 7.5 Gbps with 64B 
packets; (c) CBR trafficat 5.0 Gbps with IMIX packets.  
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3) Detect misbehavior/misconfiguration

Analyze the CPU data (number of instructions, 
in this figure) for a frequency analysis to 
understand what is the expected pattern of 
execution

- Detect if the VNF is optimally placed (and 
adapt otherwise)

- Detect if a tenant is performing unauthorized 
processing with the allocated resources

- Quickly react to potential attacks or threats

Data points
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In-network ML and software packet processing

● Assume a ML-enhanced virtual network function (VNF)

● Model is pre-trained, deployment is in data-path 

In RX ML FN TX

Server

ML-enanced VNF

Out

“fast-path”

“slow-path”
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Model performance, AI context

● Objective: detect an anomaly in the network processing load
● Left: logistic regression
● Right: multilayer perceptron | 5 layers, 10 neurons per layer
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VNF performance, network context

● We run a 20s emulation in python
● The model that performed the worst, has 0% packet loss

● In the data path, there is not a visible alteration
● It depends on the initial load

● The model that performed the best, has ~45% packet loss
● For every packet received, a packet is not transmitted
● The model is altering the state of the system
● The “anomalies” cannot be detected
● The system is not the same system to be monitored

● A real-life scenario will have unknown/unquantifiable interactions
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