
Chair of Network Architectures and Services
School of Computation, Information, and Technology
Technical University of Munich

High-Performance Packet Processing Experiments

Sebastian Gallenmüller, Johannes Naab, Dominik Scholz,
Henning Stubbe, Manuel Simon, Eric Hauser, Florian Wiedner, Georg Carle

Chair of Network Architectures and Services
School of Computation, Information, and Technology

Technical University of Munich



Motivation
Latency of a Network Function

15 20 25 30 35 40 45 50 55 60 65 70 75 80
0

1

2

Measurement time [s]

La
te

nc
y

[m
s]

Suricata forwarder worst-case latencies

• Latency spikes are caused by the OS network stack (happen for any application)

: Why should we care about 1 or 2 ms?

Sebastian Gallenmüller — High-Performance Packet Processing Experiments 2



Motivation
Why should we care about latency?

IEEE standard TX Rate Serialization Delay Impacted Packets
[Gbit/s] [ns] [#/ms]

802.3z 1 672.0 1488
802.3ae 10 67.2 14 880
802.3bm 100 6.7 149 253
802.3bs 400 1.7 588 235

P802.3dj 1600 0.4 2 500 000

1-ms transmission for different Ethernet bandwidths

• Using minimum-sized Ethernet packets (64 B incl. FCS) at full line rate
• Impact increases for every new standard
• For 1.6 Tbit/s a 1-ms delay 2.5 M packets are impacted (approx. 150 MB)

: High-performance packet processing needs to pay attention to delays

Sebastian Gallenmüller — High-Performance Packet Processing Experiments 3



Motivation
Main challenges

1. Measurement methodology that can handle the latency
• How to measure reproducibly?
• How to measure at high bandwidths?
• How to measure latency precisely and accurately?

2. Low-latency measurement examples1

• What is causing latency on software packet processing systems?
• What is the impact of specific components on software packet processing?

High-performance network testbed

1[3] S. Gallenmüller, F. Wiedner, J. Naab, and G. Carle. “How Low Can You Go? A Limbo Dance for Low-Latency Network Functions”. In: J. Netw. Syst. Manag.
31.1 (2023), p. 20

Sebastian Gallenmüller — High-Performance Packet Processing Experiments 4



Measurement Methodology

Sebastian Gallenmüller — High-Performance Packet Processing Experiments 5



Reproducible Measurements—The Plain Orchestrating Service (pos)

Our solution to create reproducible research

1. Create a testbed management system

2. Create a well-defined experiment workflow

Achieving Repeatability
• Automation
• Live images

• Researchers must automate configuration
• No residual state between reboots

: Experiments become repeatable

Achieving Reproducibility
• Providing access to experiment infrastructure
• Other researchers can easily (re-)run experiment

: Experiments become reproducible

LoadGen DuT

Controller

Minimal pos2experiment topology

2[2] S. Gallenmüller, D. Scholz, H. Stubbe, and G. Carle. “The pos framework: a methodology and toolchain for reproducible network experiments”. In: CoNEXT.
ACM, 2021

Sebastian Gallenmüller — High-Performance Packet Processing Experiments 6



Reproducible Measurements—The Plain Orchestrating Service (pos)

Our solution to create reproducible research

1. Create a testbed management system

2. Create a well-defined experiment workflow

Achieving Repeatability
• Automation
• Live images

• Researchers must automate configuration
• No residual state between reboots

: Experiments become repeatable

Achieving Reproducibility
• Providing access to experiment infrastructure
• Other researchers can easily (re-)run experiment

: Experiments become reproducible

LoadGen DuT

Controller

Minimal pos2experiment topology

2[2] S. Gallenmüller, D. Scholz, H. Stubbe, and G. Carle. “The pos framework: a methodology and toolchain for reproducible network experiments”. In: CoNEXT.
ACM, 2021

Sebastian Gallenmüller — High-Performance Packet Processing Experiments 6



Reproducible Measurements—pos Experiment Workflow

Setup phase
• Controller manages experiment
• Controller configures experiment nodes (DuT, LoadGen)
• Global / local variables (vars) parametrize setup

Measurement phase
• Repeated execution of measurement script
• Loop variables parameterize each measurement run

• e.g., different packet rates
• data of each run is connected to a specific set of loop vars

Evaluation phase
• Collected results / loop vars used for experiment evaluation
• Automated experiment release (git repository, website)

Run N
Loop

Vars N measurement

Results N

Run II
Loop

Vars II measurement

Results II

Run I

DuT Controller LoadGen
Experiment

Global
Vars

Setup Setup
Local
Vars

Local
Vars

Loop
Vars IMeasurement Measurement

Results I

Evaluation

Publication

Se
tu

p
Ph

as
e

M
ea

su
re

m
en

tP
ha

se
Ev

al
ua

tio
n

Ph
as

e

Script
Parameters
Result Data

pos workflow

Sebastian Gallenmüller — High-Performance Packet Processing Experiments 7



High-Performance Measurement and Generation of Traffic—MoonGen

MoonGen3features
• Software packet generator

• Easy to adapt (via Lua scripting language)
• High-performance (up to 100 Gbit/s or 100 million packets per second)

• Important features for measurements with high bandwidths
1. Precise rate control

• Traffic patterns can have a significant impact on measurement results
• MoonGen allows to precisely control traffic patterns (via software and with hardware support)

2. Timestamping
• NICs typically offer precise clocks for PTP (Precise Time Protocol)
• MoonGen uses these clocks for hardware timestamping

3[1] P. Emmerich et al. “MoonGen: A Scriptable High-Speed Packet Generator”. In: ACM IMC, Tokyo, Japan, 2015
Sebastian Gallenmüller — High-Performance Packet Processing Experiments 8



Measuring Latency—High-Accuracy and High-Precision Timestamping

Latency

Accuracy

Precision

Real distribution Measured distribution

Accuracy vs. precision

• Accuracy: “closeness of agreement between a test result and the accepted reference value”
• Precision: “closeness of agreement between independent test results”
• Accuracy can be improved if timestamps are taken early in the processing path
• Precision can be improved if measurements are not impacted by jitter, e.g., caused by interrupts

: Hardware timestamping on NIC (high accuracy) not impacted by interrupts (high precision)

Sebastian Gallenmüller — High-Performance Packet Processing Experiments 9



Measuring Latency—High-Accuracy and High-Precision Timestamping

LoadGen DuT
I

J

I

J

Timestamper

Three-node setup

LoadGen
• Flexible software packet generator (MoonGen)
• Bandwidth: Up to 100 Gbit/s or 100 Mpkts/s
• High-precision and high-accuracy generation

Device under Test (DuT)
• Device under test processes packets
• Forwards packets back to LoadGen
• LoadGen analyzes traffic (generated vs. received)

Timestamper

• LoadGen cannot timestamp all sent packets in hardware (only approx. 1000 pkts/s)
• Specific Intel NICs (e.g., E810) can timestamp all received packets in hardware
• Use passive optical splitters to convert entire traffic to received traffic

Sebastian Gallenmüller — High-Performance Packet Processing Experiments 10



Measuring Latency—High-Accuracy and High-Precision Timestamping

LoadGen DuT
I

J

I

J

TimestamperTimestamper

J J

Three-node setup

LoadGen
• Flexible software packet generator (MoonGen)
• Bandwidth: Up to 100 Gbit/s or 100 Mpkts/s
• High-precision and high-accuracy generation

Device under Test (DuT)
• Device under test processes packets
• Forwards packets back to LoadGen
• LoadGen analyzes traffic (generated vs. received)

Timestamper

• LoadGen cannot timestamp all sent packets in hardware (only approx. 1000 pkts/s)
• Specific Intel NICs (e.g., E810) can timestamp all received packets in hardware
• Use passive optical splitters to convert entire traffic to received traffic

Sebastian Gallenmüller — High-Performance Packet Processing Experiments 10



Low-latency Measurements

Sebastian Gallenmüller — High-Performance Packet Processing Experiments 11



Low-Latency Software Stack Design
Problems & Solutions

Reasons for latency impairment

• Interrupt-based IO
• Linux NAPI

• CPU features
• Dynamic scheduling of processes onto CPU cores
• Virtual cores (SMT/Hyperthreading)
• Energy-saving mechanisms
• Dynamic cache allocation

• Expensive VM IO

Improving latency performance

• Polling-based IO
• DPDK

• CPU features
• Statically allocate CPU cores for processes
• Disable SMT/Hyperthreading
• Disable energy-saving mechanisms
• Static cache allocation (Intel CAT)

• NIC acceleration (SR-IOV)

Sebastian Gallenmüller — High-Performance Packet Processing Experiments 12



Low-Latency Software Stack Design
Problems & Solutions

Reasons for latency impairment

• Interrupt-based IO
• Linux NAPI

• CPU features
• Dynamic scheduling of processes onto CPU cores
• Virtual cores (SMT/Hyperthreading)
• Energy-saving mechanisms
• Dynamic cache allocation

• Expensive VM IO

Improving latency performance

• Polling-based IO
• DPDK

• CPU features
• Statically allocate CPU cores for processes
• Disable SMT/Hyperthreading
• Disable energy-saving mechanisms
• Static cache allocation (Intel CAT)

• NIC acceleration (SR-IOV)

Sebastian Gallenmüller — High-Performance Packet Processing Experiments 12



Setup

LoadGen DuT
I

J

I

J

Timestamper

J J

Three-node setup

• Loadgen runs a packet generator (MoonGen) creating UDP packets
• Device under Test (DuT) runs a forwarding application

• Investigation of different scenarios by modifying the DuT
• DuT runs a forwarder in different investigated scenarios

• Timestamper records DuT ingress/egress traffic (passive optical TAPs)
• Hardware-timestamping of entire network traffic (timer resolution 12.5 ns)

• Hardware: Xeon D-1518 (Quad-core, 2.20 GHz), NIC: X557 (10G)
• Traffic: UDP, constant bit rate

Sebastian Gallenmüller — High-Performance Packet Processing Experiments 13



Impact of the Linux Kernel

• Linux kernel is offered in different variants
• Two-specific versions of the Linux kernel are optimized to deliver a predictable latency:

• Realtime kernel
• Specific kernel patches to deliver consistent latency

• No-HZ or tickless kernel
• Disables regular interrupts of the Linux kernel (so-called "tick")
• Kernel uses the tick to perform housekeeping taks via interrupts (e.g., scheduling)

• The following measurements investigate three different Linux kernels for the DuT
• rt (realtime) Linux kernel
• vanilla (unmodified) Linux kernel
• no-hz (tickless) Linux kernel

• The following measurements use a DPDK-based forwarder

Sebastian Gallenmüller — High-Performance Packet Processing Experiments 14



Impact of the Linux Kernel

0 50 90 99 99.9 99.99 99.999 99.9999
0

2

4

6

8

Percentiles [%]

La
te

nc
y

[µ
s]

rt
vanilla
no-hz

• No measurable differences for percentiles below 99.9
• Stable latency (below 6 µs) is possible for software forwarding even for high percentiles:

• Similar behavior between realtime and vanilla kernel
• Lower latency for tickless kernel

Sebastian Gallenmüller — High-Performance Packet Processing Experiments 15



Impact of the Linux Kernel

10 20 30 40 50 60 70 80
0

2

4

6

Measurement time [s]

La
te

nc
y

[µ
s]

rt

• Two different possibilities for realtime kernel
• High chance to have stable latency of approx. 3 µs
• Low chance to be processed during interrupt ("tick") resulting in higher latency of up to 6 µs

Sebastian Gallenmüller — High-Performance Packet Processing Experiments 16



Impact of the Linux Kernel

10 20 30 40 50 60 70 80
0

2

4

6

Measurement time [s]

La
te

nc
y

[µ
s]

vanilla

• Two different possibilities for realtime kernel or vanilla kernel:
• High chance to have stable latency of approx. 3 µs
• Low chance to be processed during interrupt ("tick") resulting in higher latency of up to 6 µs

Sebastian Gallenmüller — High-Performance Packet Processing Experiments 16



Impact of the Linux Kernel

10 20 30 40 50 60 70 80
0

2

4

6

Measurement time [s]

La
te

nc
y

[µ
s]

no-hz

• Two different possibilities for realtime kernel or vanilla kernel:
• High chance to have stable latency of approx. 3 µs
• Low chance to be processed during interrupt ("tick") resulting in higher latency of up to 6 µs

• More stable behavior for tickless kernel without interrupts

Sebastian Gallenmüller — High-Performance Packet Processing Experiments 16



Impact of the Linux Kernel

• Impact of Linux on other packet processing applications
• The following measurements investigate three different Linux kernels for the DuT

• vanilla (unmodified) Linux kernel
• rt (realtime) Linux kernel
• no-hz (tickless) Linux kernel

• DuT: Suricata an intrusion prevention system using a DPDK-based network stack

Sebastian Gallenmüller — High-Performance Packet Processing Experiments 17



Impact of the Linux Kernel

0 50 90 99 99.9 99.99 99.999 99.9999
100

101

102

103

Percentiles [%]

La
te

nc
y

(lo
g-

sc
al

e)
[µ

s] rt - 10 kpkt/s
rt - 250 kpkt/s

vanilla - 10 kpkt/s
vanilla - 250 kpkt/s

no-hz - 10 kpkt/s
no-hz - 250 kpkt/s

• Significant difference between previous measurement:
• Vanilla and tickless show similar latency behavior
• Realtime kernel shows consistently lower performance for high percentiles

• Reason:
• Tickless kernel only works for single-thread application (otherwise it falls back to vanilla behavior)
• Realtime kernel offers more consistent performance for multithreaded applications such as Suricata

Sebastian Gallenmüller — High-Performance Packet Processing Experiments 18



Impact of the NIC

• Different generations of (Intel) NICs are currently available:
• X500 generation (up to 10 Gbit/s, released in 2009)
• X700 generation (up to 40 Gbit/s, released in 2014)
• E800 generation (up to 100 Gbit/s, released in 2020)

• The following measurements use a DPDK-based forwarder with rates between 10 and 250 kpkt/s

Sebastian Gallenmüller — High-Performance Packet Processing Experiments 19



Impact of the NIC

0 50 90 99 99.9 99.99 99.999 99.9999
100

101

102

Percentiles [%]

La
te

nc
y

[µ
s]

X520 - 10 kpkt/s
X520 - 250 kpkt/s

X710 - 10 kpkt/s
X710 - 250 kpkt/s

E810 - 10 kpkt/s
E810 - 250 kpkt/s

• X500 rather simple architecture, most of the features implemented in hardware, most stable latency
• X700 more complex architecture (more like a switch architecture than NIC), significant latency increase
• E800 complex architecture, more stable latency than previous generation

Sebastian Gallenmüller — High-Performance Packet Processing Experiments 20



Impact of Virtualization

• Impact of virtualization on latency
• The following measurements use a DPDK-based forwarder
• SR-IOV is used for a hardware-accelerated network IO of VMs (based on X557 NIC)
• Comparison of vanilla, realtime, and tickless kernel

Sebastian Gallenmüller — High-Performance Packet Processing Experiments 21



Impact of Virtualization

0 50 90 99 99.9 99.99 99.999 99.9999
0

4

8

12

16

Percentiles [%]

La
te

nc
y

[µ
s]

rt
vanilla
no-hz

• Similar latency performance vanilla and tickless kernel
• Realtime kernel performs slightly worse for high percentiles
• In general, latency in VMs can be close to bare-metal deployments

Sebastian Gallenmüller — High-Performance Packet Processing Experiments 22



Conclusion

Measurement methodology

• Measurement methodology is highly relevant to perform effective measurements (especially for latency)
• Hardware support is required for latency measurements

Low-latency experiments

• Linux kernel relevant for latency (even if OS stack is not used)
• No clear recommendation which kernel is best, highly depends on the specific scenario:

• realtime kernel offered the lowest latency for multi-threaded applications
• tickless kernel offered lowest latency for single-threaded applications
• vanilla kernel performed best for our VM scenario

• Choice of NIC controller impacts latency
• In our scenario, we observed that older NICs with a simpler architecture offered the best latency

Sebastian Gallenmüller — High-Performance Packet Processing Experiments 23



Conclusion

Measurement methodology

• Measurement methodology is highly relevant to perform effective measurements (especially for latency)
• Hardware support is required for latency measurements

Low-latency experiments

• Linux kernel relevant for latency (even if OS stack is not used)
• No clear recommendation which kernel is best, highly depends on the specific scenario:

• realtime kernel offered the lowest latency for multi-threaded applications
• tickless kernel offered lowest latency for single-threaded applications
• vanilla kernel performed best for our VM scenario

• Choice of NIC controller impacts latency
• In our scenario, we observed that older NICs with a simpler architecture offered the best latency

Sebastian Gallenmüller — High-Performance Packet Processing Experiments 23



Thank you for listening.

Sebastian Gallenmüller — High-Performance Packet Processing Experiments 24



Bibliography

[1] P. Emmerich, S. Gallenmüller, D. Raumer, F. Wohlfart, and G. Carle. “MoonGen: A Scriptable High-Speed Packet
Generator”. In: ACM IMC, Tokyo, Japan, 2015.

[2] S. Gallenmüller, D. Scholz, H. Stubbe, and G. Carle. “The pos framework: a methodology and toolchain for
reproducible network experiments”. In: CoNEXT. ACM, 2021.

[3] S. Gallenmüller, F. Wiedner, J. Naab, and G. Carle. “How Low Can You Go? A Limbo Dance for Low-Latency
Network Functions”. In: J. Netw. Syst. Manag. 31.1 (2023), p. 20.

Sebastian Gallenmüller — High-Performance Packet Processing Experiments 25



Backup

Sebastian Gallenmüller — High-Performance Packet Processing Experiments 26



Design

Host

P-core 0

VM

P-core 1 P-core 2 P-core 3

unused

NIC

VF

N H

N H

Example setup on a 4-core CPU

• Static pinning: Host OS : p(hysical)-core 0, VM OS : p-core 1, App : p-core 2
• P-core 2 is isolated from scheduling from Host OS & VM OS
• SR-IOV splits NIC into Virtual Functions (VF), one VF exclusively bound to p-core 2

Sebastian Gallenmüller — High-Performance Packet Processing Experiments 27



Hardware Architecture

NIC0

LLC

Memory Controller

Core0 Core1

RAM0

LLC

Memory Controller

Core0 Core1 NIC1

RAM1

PCIe PCIeQPI / UPI

Mem.
Bus

Mem.
Bus

CPU0 CPU1

Typical high-level hardware architecture

Typical resources available for packet processing

• Ethernet: 10 Gbit/s to 100 Gbit/s
• PCIe: 32 Gbit/s to 125 Gbit/s (8× PCIe 2.0 / 4.0)
• Memory bus: 51 Gbit/s to 205 Gbit/s (DDR3-800 / DDR4-3200)
• QPI/UPI: 77 Gbit/s to 166 Gbit/s
• CPU: 2.0 GHz/core to 4.0 GHz/core

Sebastian Gallenmüller — High-Performance Packet Processing Experiments 28


	Motivation
	
	Reproducible Measurements—The Plain Orchestrating Service (pos)
	Reproducible Measurements—pos Experiment Workflow
	High-Performance Measurement and Generation of Traffic—MoonGen
	Measuring Latency—High-Accuracy and High-Precision Timestamping
	
	Low-Latency Software Stack Design
	Setup
	Impact of the Linux Kernel
	Impact of the NIC
	Impact of Virtualization
	Conclusion
	 
	Bibliography
	References
	

