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Motivation
Latency of a Network Function
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Suricata forwarder worst-case latencies

• Latency spikes are caused by the OS network stack (happen for any application)

: Why should we care about 1 or 2 ms?
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Motivation
Why should we care about latency?

IEEE standard TX Rate Serialization Delay Impacted Packets
[Gbit/s] [ns] [#/ms]

802.3z 1 672.0 1488
802.3ae 10 67.2 14 880
802.3bm 100 6.7 149 253
802.3bs 400 1.7 588 235

P802.3dj 1600 0.4 2 500 000

1-ms transmission for different Ethernet bandwidths

• Using minimum-sized Ethernet packets (64 B incl. FCS) at full line rate
• Impact increases for every new standard
• For 1.6 Tbit/s a 1-ms delay 2.5 M packets are impacted (approx. 150 MB)

: High-performance packet processing needs to pay attention to delays
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Motivation
Main challenges

1. Measurement methodology that can handle the latency
• How to measure reproducibly?
• How to measure at high bandwidths?
• How to measure latency precisely and accurately?

2. Low-latency measurement examples1

• What is causing latency on software packet processing systems?
• What is the impact of specific components on software packet processing?

High-performance network testbed

1[3] S. Gallenmüller, F. Wiedner, J. Naab, and G. Carle. “How Low Can You Go? A Limbo Dance for Low-Latency Network Functions”. In: J. Netw. Syst. Manag.
31.1 (2023), p. 20

Sebastian Gallenmüller — High-Performance Packet Processing Experiments 4



Measurement Methodology
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Reproducible Measurements—The Plain Orchestrating Service (pos)

Our solution to create reproducible research

1. Create a testbed management system

2. Create a well-defined experiment workflow

Achieving Repeatability
• Automation
• Live images

• Researchers must automate configuration
• No residual state between reboots

: Experiments become repeatable

Achieving Reproducibility
• Providing access to experiment infrastructure
• Other researchers can easily (re-)run experiment

: Experiments become reproducible

LoadGen DuT

Controller

Minimal pos2experiment topology

2[2] S. Gallenmüller, D. Scholz, H. Stubbe, and G. Carle. “The pos framework: a methodology and toolchain for reproducible network experiments”. In: CoNEXT.
ACM, 2021
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Reproducible Measurements—pos Experiment Workflow

Setup phase
• Controller manages experiment
• Controller configures experiment nodes (DuT, LoadGen)
• Global / local variables (vars) parametrize setup

Measurement phase
• Repeated execution of measurement script
• Loop variables parameterize each measurement run

• e.g., different packet rates
• data of each run is connected to a specific set of loop vars

Evaluation phase
• Collected results / loop vars used for experiment evaluation
• Automated experiment release (git repository, website)

Run N
Loop

Vars N measurement

Results N

Run II
Loop

Vars II measurement

Results II

Run I

DuT Controller LoadGen
Experiment

Global
Vars

Setup Setup
Local
Vars

Local
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pos workflow
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High-Performance Measurement and Generation of Traffic—MoonGen

MoonGen3features
• Software packet generator

• Easy to adapt (via Lua scripting language)
• High-performance (up to 100 Gbit/s or 100 million packets per second)

• Important features for measurements with high bandwidths
1. Precise rate control

• Traffic patterns can have a significant impact on measurement results
• MoonGen allows to precisely control traffic patterns (via software and with hardware support)

2. Timestamping
• NICs typically offer precise clocks for PTP (Precise Time Protocol)
• MoonGen uses these clocks for hardware timestamping

3[1] P. Emmerich et al. “MoonGen: A Scriptable High-Speed Packet Generator”. In: ACM IMC, Tokyo, Japan, 2015
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Measuring Latency—High-Accuracy and High-Precision Timestamping

Latency

Accuracy

Precision

Real distribution Measured distribution

Accuracy vs. precision

• Accuracy: “closeness of agreement between a test result and the accepted reference value”
• Precision: “closeness of agreement between independent test results”
• Accuracy can be improved if timestamps are taken early in the processing path
• Precision can be improved if measurements are not impacted by jitter, e.g., caused by interrupts

: Hardware timestamping on NIC (high accuracy) not impacted by interrupts (high precision)
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Measuring Latency—High-Accuracy and High-Precision Timestamping

LoadGen DuT
I

J

I

J

Timestamper

Three-node setup

LoadGen
• Flexible software packet generator (MoonGen)
• Bandwidth: Up to 100 Gbit/s or 100 Mpkts/s
• High-precision and high-accuracy generation

Device under Test (DuT)
• Device under test processes packets
• Forwards packets back to LoadGen
• LoadGen analyzes traffic (generated vs. received)

Timestamper

• LoadGen cannot timestamp all sent packets in hardware (only approx. 1000 pkts/s)
• Specific Intel NICs (e.g., E810) can timestamp all received packets in hardware
• Use passive optical splitters to convert entire traffic to received traffic
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Low-latency Measurements
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Low-Latency Software Stack Design
Problems & Solutions

Reasons for latency impairment

• Interrupt-based IO
• Linux NAPI

• CPU features
• Dynamic scheduling of processes onto CPU cores
• Virtual cores (SMT/Hyperthreading)
• Energy-saving mechanisms
• Dynamic cache allocation

• Expensive VM IO

Improving latency performance

• Polling-based IO
• DPDK

• CPU features
• Statically allocate CPU cores for processes
• Disable SMT/Hyperthreading
• Disable energy-saving mechanisms
• Static cache allocation (Intel CAT)

• NIC acceleration (SR-IOV)
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Setup

LoadGen DuT
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Timestamper

J J

Three-node setup

• Loadgen runs a packet generator (MoonGen) creating UDP packets
• Device under Test (DuT) runs a forwarding application

• Investigation of different scenarios by modifying the DuT
• DuT runs a forwarder in different investigated scenarios

• Timestamper records DuT ingress/egress traffic (passive optical TAPs)
• Hardware-timestamping of entire network traffic (timer resolution 12.5 ns)

• Hardware: Xeon D-1518 (Quad-core, 2.20 GHz), NIC: X557 (10G)
• Traffic: UDP, constant bit rate
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Impact of the Linux Kernel

• Linux kernel is offered in different variants
• Two-specific versions of the Linux kernel are optimized to deliver a predictable latency:

• Realtime kernel
• Specific kernel patches to deliver consistent latency

• No-HZ or tickless kernel
• Disables regular interrupts of the Linux kernel (so-called "tick")
• Kernel uses the tick to perform housekeeping taks via interrupts (e.g., scheduling)

• The following measurements investigate three different Linux kernels for the DuT
• rt (realtime) Linux kernel
• vanilla (unmodified) Linux kernel
• no-hz (tickless) Linux kernel

• The following measurements use a DPDK-based forwarder

Sebastian Gallenmüller — High-Performance Packet Processing Experiments 14



Impact of the Linux Kernel
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• No measurable differences for percentiles below 99.9
• Stable latency (below 6 µs) is possible for software forwarding even for high percentiles:

• Similar behavior between realtime and vanilla kernel
• Lower latency for tickless kernel
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Impact of the Linux Kernel
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• Two different possibilities for realtime kernel
• High chance to have stable latency of approx. 3 µs
• Low chance to be processed during interrupt ("tick") resulting in higher latency of up to 6 µs
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Impact of the Linux Kernel
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vanilla

• Two different possibilities for realtime kernel or vanilla kernel:
• High chance to have stable latency of approx. 3 µs
• Low chance to be processed during interrupt ("tick") resulting in higher latency of up to 6 µs
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Impact of the Linux Kernel
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• Two different possibilities for realtime kernel or vanilla kernel:
• High chance to have stable latency of approx. 3 µs
• Low chance to be processed during interrupt ("tick") resulting in higher latency of up to 6 µs

• More stable behavior for tickless kernel without interrupts
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Impact of the Linux Kernel

• Impact of Linux on other packet processing applications
• The following measurements investigate three different Linux kernels for the DuT

• vanilla (unmodified) Linux kernel
• rt (realtime) Linux kernel
• no-hz (tickless) Linux kernel

• DuT: Suricata an intrusion prevention system using a DPDK-based network stack
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Impact of the Linux Kernel
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• Significant difference between previous measurement:
• Vanilla and tickless show similar latency behavior
• Realtime kernel shows consistently lower performance for high percentiles

• Reason:
• Tickless kernel only works for single-thread application (otherwise it falls back to vanilla behavior)
• Realtime kernel offers more consistent performance for multithreaded applications such as Suricata
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Impact of the NIC

• Different generations of (Intel) NICs are currently available:
• X500 generation (up to 10 Gbit/s, released in 2009)
• X700 generation (up to 40 Gbit/s, released in 2014)
• E800 generation (up to 100 Gbit/s, released in 2020)

• The following measurements use a DPDK-based forwarder with rates between 10 and 250 kpkt/s
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Impact of the NIC
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• X500 rather simple architecture, most of the features implemented in hardware, most stable latency
• X700 more complex architecture (more like a switch architecture than NIC), significant latency increase
• E800 complex architecture, more stable latency than previous generation
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Impact of Virtualization

• Impact of virtualization on latency
• The following measurements use a DPDK-based forwarder
• SR-IOV is used for a hardware-accelerated network IO of VMs (based on X557 NIC)
• Comparison of vanilla, realtime, and tickless kernel
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Impact of Virtualization
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• Similar latency performance vanilla and tickless kernel
• Realtime kernel performs slightly worse for high percentiles
• In general, latency in VMs can be close to bare-metal deployments
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Conclusion

Measurement methodology

• Measurement methodology is highly relevant to perform effective measurements (especially for latency)
• Hardware support is required for latency measurements

Low-latency experiments

• Linux kernel relevant for latency (even if OS stack is not used)
• No clear recommendation which kernel is best, highly depends on the specific scenario:

• realtime kernel offered the lowest latency for multi-threaded applications
• tickless kernel offered lowest latency for single-threaded applications
• vanilla kernel performed best for our VM scenario

• Choice of NIC controller impacts latency
• In our scenario, we observed that older NICs with a simpler architecture offered the best latency
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Thank you for listening.
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Backup
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Design

Host

P-core 0

VM

P-core 1 P-core 2 P-core 3

unused

NIC

VF

N H

N H

Example setup on a 4-core CPU

• Static pinning: Host OS : p(hysical)-core 0, VM OS : p-core 1, App : p-core 2
• P-core 2 is isolated from scheduling from Host OS & VM OS
• SR-IOV splits NIC into Virtual Functions (VF), one VF exclusively bound to p-core 2

Sebastian Gallenmüller — High-Performance Packet Processing Experiments 27



Hardware Architecture

NIC0

LLC

Memory Controller

Core0 Core1

RAM0

LLC

Memory Controller

Core0 Core1 NIC1

RAM1

PCIe PCIeQPI / UPI

Mem.
Bus

Mem.
Bus

CPU0 CPU1

Typical high-level hardware architecture

Typical resources available for packet processing

• Ethernet: 10 Gbit/s to 100 Gbit/s
• PCIe: 32 Gbit/s to 125 Gbit/s (8× PCIe 2.0 / 4.0)
• Memory bus: 51 Gbit/s to 205 Gbit/s (DDR3-800 / DDR4-3200)
• QPI/UPI: 77 Gbit/s to 166 Gbit/s
• CPU: 2.0 GHz/core to 4.0 GHz/core
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